Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications

Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA-AgNPs and TEA-AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21–77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20–88.10%) and fungi (82.20–86.10%), and also scavenged DPPH (37.48–79.42%) and hydrogen peroxide (20.50–96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.


    1. 1)
      • 1. Bhat, R., Desphande, R., Ganachari, S.V., et al: ‘Photo-irradiated bio-synthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies’, Bioinorg. Chem. Appl., 2011, pp. 17, doi:10.1155/2011/650979 Article ID 650979.
    2. 2)
      • 2. Shaligram, N.S., Bule, M., Bhambure, R., et al: ‘Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain’, Process Biochem., 2009, 44, pp. 939943.
    3. 3)
      • 3. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, p. 32.
    4. 4)
      • 4. Adelere, I.A., Lateef, A.: ‘A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments’, Nanotechnol. Rev., 2016, 5, pp. 567587.
    5. 5)
      • 5. Shailesh, C.K., Tessy, J., Kokila, A.P.: ‘A review: fabrication of biogenic silver nanoparticles and applications’, J. Chem. Biol. Phys. Sci., 2016, 6, pp. 9971009.
    6. 6)
      • 6. Roopan, R.G., Madhumitha, G., Rahuman, A.A., et al: ‘Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity’, Ind. Crops Prod., 2013, 43, pp. 631635.
    7. 7)
      • 7. Harish, B.S., Uppuluri, K.B., Anbazhagan, V.: ‘Synthesis of fibrinolytic active nanoparticles using wheat bran xylan as a reducing and stabilizing agent’, Carbohydr. Polymer, 2015, 132, pp. 104110.
    8. 8)
      • 8. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities’, BioNanoSci., 2015, 5, pp. 196205.
    9. 9)
      • 9. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Biogenic synthesis of silver nanoparticles using a pod extract of cola nitida: antibacterial, antioxidant activities and application as a paint additive’, J. Taibah Univ. Sci., 2016, 10, pp. 551562.
    10. 10)
      • 10. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities’, J. Nanostruct. Chem., 2016, 6, pp. 159169.
    11. 11)
      • 11. Mokhtari, M., Deneshpojouh, S., Seyedbagheri, S., et al: ‘Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effect of visible-light irradiation and the liquid mixing process’, Mater. Res. Bull., 2009, 44, pp. 14151421.
    12. 12)
      • 12. Samadi, N., Golkaran, D., Eslamifar, A., et al: ‘Intra/extracellular biosynthesis of silver nanoparticles by an autochtonous strain of Proteus mirabilis isolated from photographic waste’, J. Biomed. Nanotechnol., 2009, 5, pp. 247253.
    13. 13)
      • 13. Nazeruddin, G.M., Prasad, N.R., Prasad, S.R., et al: ‘Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity’, Ind. Crops Prod., 2014, 60, pp. 212216.
    14. 14)
      • 14. Azeez, M.A., Lateef, A., Asafa, T.B., et al: ‘Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents’, J. Clust. Sci., 2017, 28, pp. 149164.
    15. 15)
      • 15. Lateef, A., Akande, M.A., Azeez, M.A., et al: ‘Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications’, Nanotechnol. Rev., 2016, 5, pp. 507520.
    16. 16)
      • 16. Shanmugam, C., Sivasubramanian, G., Parthasarathi, B., et al: ‘Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability’, Appl. Nanosci., 2016, 6, pp. 711723.
    17. 17)
      • 17. Lateef, A., Ojo, S.A., Akinwale, A.S., et al: ‘Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities’, Biologia, 2015, 70, pp. 12951306.
    18. 18)
      • 18. Lateef, A., Ojo, S.A., Oladejo, S.M.: ‘Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13’, Process Biochem., 2016, 51, pp. 14061412.
    19. 19)
      • 19. Oladipo, I.C., Lateef, A., Azeez, M.A., et al: ‘Green synthesis and antimicrobial activities of silver nanoparticles using cell-free extracts of Enterococcus species’, Not. Sci. Biol., 2017, 9, pp. 196203.
    20. 20)
      • 20. Lateef, A., Ojo, S.A., Azeez, M.A., et al: ‘Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles’, Appl. Nanosci., 2016, 6, pp. 863874.
    21. 21)
      • 21. Lateef, A., Akande, M.A., Ojo, S.A., et al: ‘Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications’, 3 Biotech., 2016, 6, p. 140.
    22. 22)
      • 22. Lateef, A., Ojo, S.A., Elegbede, J.A.: ‘The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles’, Nanotechnol. Rev., 2016, 5, pp. 601622.
    23. 23)
      • 23. Durán, M., Silveira, C.P., Durán, N.: ‘Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review’, IET Nanobiotechnol., 2015, 9, pp. 314323.
    24. 24)
      • 24. Mishra, A, Sardar, M.: ‘Alpha-amylase mediated synthesis of silver nanoparticles’, Sci. Adv. Mater., 2012, 4, pp. 143146.
    25. 25)
      • 25. Durán, N., Cuevas, R., Cordi, L., et al: ‘Biogenic silver nanoparticles associated with silver chloride nanoparticles ([email protected]) produced by laccase from Trametes versicolor, SpringerPlus, 2014, 3, p. 645.
    26. 26)
      • 26. Lateef, A., Adeeyo, A.O.: ‘Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes’,Not. Sci. Biol., 2015, 7, pp. 405411.
    27. 27)
      • 27. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: ‘Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications’, Biotechnol. Biotechnol. Equip., 2015, 29, pp. 5463.
    28. 28)
      • 28. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: ‘The biology and potential biotechnological applications of Bacillus safensis’, Biologia, 2015, 70, pp. 411419.
    29. 29)
      • 29. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B., et al: ‘Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13’, Int. Nano Lett., 2015, 5, pp. 2935.
    30. 30)
      • 30. Talekar, S., Joshi, G., Chougle, R., et al: ‘Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate’, Catal. Commun., 2014, 53, pp. 6266.
    31. 31)
      • 31. Rai, T., Panda, D.: ‘An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol’, Chem. Phys. Lett., 2015, 623, pp. 108112.
    32. 32)
      • 32. Beg, Q.K., Kapoor, M., Mahajan, L., et al: ‘Microbial xylanases and their industrial applications: a review’, Appl. Microbiol. Biotechnol., 2001, 56, pp. 326338.
    33. 33)
      • 33. Harris, A.D., Ramalingam, C.: ‘Xylanase and its application in food industry: a review’, J. Exp. Sci., 2010, 1, pp. 111.
    34. 34)
      • 34. Won-Jae, C., Da Yeon, P., Yong-Keun, C., et al: ‘A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification, and characterization’, Appl. Biochem. Biotechnol., 2012, 168, pp. 899909.
    35. 35)
      • 35. Elegbede, J.A., Lateef, A.: ‘Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications’, Waste Biomass Valor., 2017, DOI 10.1007/s12649-017-9932-y.
    36. 36)
      • 36. Lateef, A., Ojo, M.O.: ‘Public health issues in the processing of Cassava (Manihot esculenta) for production ‘Lafun’ and the application of hazard analysis control measures’, Qual. Assur. Saf. Crops Foods, 2016, 8, pp. 165177.
    37. 37)
      • 37. Prasannaraj, G., Venkatachalam, P.: ‘Enhanced antibacterial, anti-biofilm and antioxidant (ROS) activities of biomolecules engineered silver nanoparticles against clinically isolated gram positive and gram negative microbial pathogens’, J. Clust. Sci., 2017, 28, pp. 645664.
    38. 38)
      • 38. Salem, W.M., Haridy, M., Sayed, W.F., et al: ‘Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus’, Ind. Crops Prod., 2014, 62, pp. 228234.
    39. 39)
      • 39. Khatami, M., Pourseyedi, S., Khatami, M., et al: ‘Synthesis of silver nanoparticles using seed exudates of sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity’, Bioresour. Bioproc., 2015, 2, pp. 19.
    40. 40)
      • 40. Ghaedi, M., Sadeghian, B., Amiri, P.A., et al: ‘Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon’, Chem. Eng., 2012, 187, pp. 133141.
    41. 41)
      • 41. Williams, B.W., Cuverlier, M.E., Berset, C.: ‘Use of free radical method to evaluate antioxidant activity’, Food Sci. Technol. LWT, 1995, 28, pp. 2530.
    42. 42)
      • 42. Olajire, A.A., Azeez, L.: ‘Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables’, Afr. J. Food Sci. Technol., 2011, 2, pp. 022029.
    43. 43)
      • 43. Bhakya, S., Muthukrishnan, S., Sukumaran, M., et al: ‘Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity’, Appl. Nanosci., 2016, 6, pp. 755766.
    44. 44)
      • 44. Lateef, A., Ojo, S.A., Elegbede, J.A., et al: ‘Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities’, J. Clust. Sci., 2017, 28, pp. 13791392.
    45. 45)
      • 45. Thirumurugan, A., Tomy, N.A., Kumar, H.P., et al: ‘Biological synthesis of silver nanoparticles by Lantana camara leaf extracts’, Int. J. Nanomat. Biostruct., 2011, 1, pp. 2224.
    46. 46)
      • 46. Zaki, S., El-Kady, M.F., Abd-El-Haleem, D.: ‘Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates’, Mater. Res. Bull., 2011, 46, pp. 15711576.
    47. 47)
      • 47. Kannan, R.R.R., Arumugam, R., Ramya, D., et al: ‘Green synthesis of silver nanoparticles using marine macroalga chaetomorpha linum’, Appl. Nanosci., 2013, 3, pp. 229233.
    48. 48)
      • 48. Priyadarshini, S., Gopinath, V., Priyadharsshini, N.M., et al: ‘Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application’, Colloids Surf. B Biointerf., 2013, 102, pp. 232237.
    49. 49)
      • 49. Shankar, S., Jaiswal, L., Aparna, R.S.L., et al: ‘Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract’, Mater. Lett., 2014, 137, pp. 7578.
    50. 50)
      • 50. Kumari, M.M., Jacob, J., Philip, D.: ‘Green synthesis and applications of Au-Ag bimetallic nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectr., 2015, 137, pp. 185192.
    51. 51)
      • 51. Rout, Y., Behera, S., Ojha, A.K., et al: ‘Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities’, J. Microbiol. Antimicrob., 2012, 4, pp. 103109.
    52. 52)
      • 52. Netala, V.R., Kotakadi, V.S., Domdi, L., et al: ‘Biogenic silver nanoparticles: efficient and effective antifungal agents’, Appl. Nanosci., 2016, 6, pp. 475484.
    53. 53)
      • 53. Wani, I.A., Ahmad, T.: ‘Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida’, Colloids Surf. B: Biointerf., 2013, 101, pp. 162170.
    54. 54)
      • 54. Sengan, M., Veeramuthu, D., Veerappan, A.: ‘Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitroaromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions’, Mater. Res. Bull., 2018, 100, pp. 386393.
    55. 55)
      • 55. Bogireddy, N.K.R., Anand, K.K.H., Mandal, B.K.: ‘Gold nanoparticles-synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes’, J. Mol. Liq., 2015, 211, pp. 868875.
    56. 56)
      • 56. Ahmed, K.B.A., Senthilnathan, R., Megarajan, S., et al: ‘Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. J. Photochem. Photobiol. B: Biol., 2015, 151, pp. 3945.
    57. 57)
      • 57. Lateef, A., Ojo, S.A., Folarin, B.I., et al: ‘Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications’, J. Clust. Sci., 2016, 27, pp. 15611577.
    58. 58)
      • 58. Ojo, S.A., Lateef, A., Azeez, M.A., et al: ‘Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities’, IEEE Trans. NanoBiosci., 2016, 15, pp. 433442.
    59. 59)
      • 59. Gulcin, I., Elmastas, M., Aboul-Enein, H.Y.: ‘Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies’, Phytother. Res., 2007, 21, pp. 354361.
    60. 60)
      • 60. Chang, H.F., Yang, L.L.: ‘Radical-scavenging and rat liver mitochondria lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs’, J. Med. Plants Res., 2012, 6, pp. 9971006.
    61. 61)
      • 61. Raghavan, S., Kristinsson, H.G., Leeuwenburgh, C.: ‘Radical scavenging and reducing ability of tilapia (oreochromis niloticus) protein hydrolysates’, J. Agric. Food Chem., 2008, 56, pp. 1035910367.
    62. 62)
      • 62. Oladipo, I. C., Lateef, A., Elegbede, J.A., et al: ‘Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications’, J. Photochem. Photobiol. B: Biol., 2017, 173, pp. 250257.
    63. 63)
      • 63. Singh, P., Kim, Y.J., Yang, D.C.: ‘A strategic approach for rapid synthesis of gold and silver nanoparticles by panax ginseng leaves’, Artif. Cells Nanomed. Biotechnol., 2015, 44, pp. 19491957.
    64. 64)
      • 64. Silva, A.K.A., Letourneur, D., Chauvierre, C.: ‘Polysaccharide nanosystems for future progress in cardiovascular pathologies’, Theranostics, 2014, 4, pp. 576591.
    65. 65)
      • 65. Ilinskaya, A.N., Dobrovolskaia, M.A.: ‘Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology’, Nanomedicine (Lond.), 2013, 8, pp. 773784.

Related content

This is a required field
Please enter a valid email address