Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Preparation and in vitro evaluation of novel cross-linked chondroitin sulphate nanoparticles by aluminium ions for encapsulation of green tea flavonoids

Chondroitin sulphate is a sulphated glycosaminoglycan biopolymer composed over 100 individual sugars. Chondroitin sulphate nanoparticles (NPs) loaded with catechin were prepared by an ionic gelation method using AlCl3 and optimised for polymer and cross-linking agent concentration, curing time and stirring speed. Zeta potential, particle size, loading efficiency, and release efficiency over 24 h (RE24%) were evaluated. The surface morphology of NPs was investigated by scanning electron microscopy and their thermal behaviour by differential scanning calorimetric. Antioxidant effect of NPs was determined by chelating activity of iron ions. The cell viability of mesenchymal stem cells was determined by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay and the calcification of osteoblasts was studied by Alizarin red staining. The optimised NPs showed particle size of 176 nm, zeta potential of −20.8 mV, loading efficiency of 93.3% and RE24% of 80.6%. The chatechin loaded chondroitin sulphate NPs showed 70-fold more antioxidant activity, 3-fold proliferation effect and higher calcium precipitation in osteoblasts than free catechin.

Inspec keywords: scanning electron microscopy; surface morphology; molecular configurations; cellular biophysics; encapsulation; curing; biomedical materials; polymer blends; precipitation; biochemistry; nanomedicine; molecular biophysics; nanofabrication; differential scanning calorimetry; nanoparticles; electrokinetic effects; dyes; particle size

Other keywords: chatechin loaded chondroitin sulphate NPs; mesenchymal stem cells; calcium precipitation; curing time; cross-linked chondroitin sulphate nanoparticles; in vitro evaluation; differential scanning calorimetry; antioxidant activity; aluminium ions; loading efficiency; calcification; 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay; Alizarin red staining; sugars; osteoblasts; sulphated glycosaminoglycan biopolymer; nanoparticles; green tea flavonoids; cross-linking agent concentration; catechin; chelating activity; cell viability; zeta potential; thermal behaviour; ionic gelation method; scanning electron microscopy; 3-fold proliferation effect; surface morphology; particle size; size 176 nm; release efficiency; time 24 h; stirring speed

Subjects: Biomolecular interactions, charge transfer complexes; Cellular biophysics; Nanotechnology applications in biomedicine; Physical chemistry of biomolecular solutions and condensed states; Other methods of nanofabrication; Electrochemistry and electrophoresis; Precipitation and segregation; Biomedical materials; Macromolecular configuration (bonds, dimensions); Solid surface structure; Biomolecular structure, configuration, conformation, and active sites; Polymer reactions and polymerization; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 8. Wilson, D.G., Phamluong, K., Lin, W.Y., et al: ‘Chondroitin sulphate synthase 1 (Chsy1) is required for bone development and digit patterning’, Dev. Biol., 2012, 363, (2), pp. 413425.
    2. 2)
      • 28. Xi, J., Qin, J., Fan, L.: ‘Chondroitin sulphate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery’, Int. J. Nanomed., 2012, 7, pp. 52355247.
    3. 3)
      • 20. Abdullah, T.A., Ibrahim, N.J., Warsi, M.H.: ‘Chondroitin sulphate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration’, Int. J. Pharm. Invest., 2016, 6, (2), pp. 96105.
    4. 4)
      • 5. Jin, P., Wu, H., Xu, G., et al: ‘Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study’, Cell Tissue Res., 2014, 356, (2), pp. 381390.
    5. 5)
      • 27. Noori Koopaei, M., Khoshayand, M.R., Mostafavi, S.H., et al: ‘Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect’, Iran. J. Pharm. Res., 2014, 13, (3), pp. 819833.
    6. 6)
      • 4. Feng, W.Y.: ‘Metabolism of green tea catechins: an overview’, Curr. Drug Metabol., 2006, 7, (7), pp. 755809.
    7. 7)
      • 19. Rubinstein, A., Nakar, D., Sintov, A.: ‘Chondroitin sulfate: a potential biodegradable carrier for colon-specific drug delivery’, Int. J. Pharm., 1992, 84, (2), pp. 141150.
    8. 8)
      • 1. Shen, C.L., Yeh, J.K., Cao, J., et al: ‘Green tea and bone metabolism’, Nutr. Res., 2009, 29, (7), pp. 437456.
    9. 9)
      • 10. Dudeck, J., Rehberg, S., Bernhardt, R., et al: ‘Increased bone randomized around titanium implants coated with chondroitin sulphate in ovariectomized rats’, Acta Biomater., 2014, 10, (6), pp. 28552865.
    10. 10)
      • 7. Liu, Z., Jiao, Y., Wang, Y., et al: ‘Polysaccharides-based nanoparticles as drug delivery systems’, Adv. Drug Deliv. Rev., 2008, 60, (15), pp. 16501662.
    11. 11)
      • 17. Hong, Z., Xu, Y., Yin, J.F., et al: ‘Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid’, J. Agrical. Food Chem., 2014, 62, (52), pp. 1260312609.
    12. 12)
      • 9. Wildi, L.M., Raynauld, J.P., Martel-Pelletier, J., et al: ‘Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions inknee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomized, double-blind, placebo-controlled pilot study using MRI’, Annal. Rheum. Dis., 2011, 70, (6), pp. 982989.
    13. 13)
      • 18. Pool, H., Quintanar, D., de Dios Figueroa, J., et al: ‘Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles’, J. Nanomater., 2012, 2012, Article ID 145380.
    14. 14)
      • 14. Zhang, H., Jung, J., Zhao, Y.: ‘Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes’, Carbohyd. Polym., 2016, 137, pp. 8291.
    15. 15)
      • 23. Hariyadi, D.M., Purwanti, T., Wardani, D.: ‘Stability of freeze-dried ovalbumin-alginate microspheres with different lyoprotectants’, Res. J. Pharm. Technol., 2016, 9, (1), pp. 2026.
    16. 16)
      • 3. Dube, A., Nicolazzo, J.A., Larson, I.: ‘Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (–)-epigallocatechin gallate’, Eur. J. Pharm. Sci., 2010, 41, (2), pp. 219225.
    17. 17)
      • 15. Singh, M., Bhatnagar, P., Mishra, S., et al: ‘PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma’, Int. J. Nanomed., 2015, 10, pp. 67896809.
    18. 18)
      • 29. Qiu, Y., Chen, Y., Zeng, T., et al: ‘EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210’, Mol. Biol. Rep., 2016, 43, (3), pp. 183193.
    19. 19)
      • 25. Kirby, B.J., Hasselbrink, E.F.: ‘Zeta potential of microfluidic substrates: 2. Data for polymers’, Electrophoresis, 2004, 25, (2), pp. 203213.
    20. 20)
      • 12. Radhakrishnan, R., Kulhari, H., Pooja, D., et al: ‘Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer’, Chem. Phys. Lipid., 2016, 198, pp. 5160.
    21. 21)
      • 16. Shafiei, S.S., Solati-Hashjin, M., Samadikuchaksaraei, A., et al: ‘Epigallocatechin gallate/layered double hydroxide nanohybrids: preparation, characterization, and in vitro anti-tumor study’, PloS One, 2015, 10, (8), p. e0136530.
    22. 22)
      • 11. Frias, I., Neves, A.R., Pinheiro, M., et al: ‘Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation’, Drug Des. Dev. Ther., 2016, 10, pp. 35193528.
    23. 23)
      • 22. Gulati, N., Nagaich, U., Saraf, S.: ‘Fabrication and in vitro characterization of polymeric nanoparticles for Parkinson's therapy: a novel approach’, Brazil. J. Pharm. Sci., 2014, 50, (4), pp. 869876.
    24. 24)
      • 6. Kumar, S.A., Suresh, M., Kishore Kumar, S.N., et al: ‘Synthesis and characterization of major green tea catechin nanoparticle’, Asian J. Chem., 2013, 25, pp. S343S346.
    25. 25)
      • 21. Singh, K., Mishra, A.: ‘Water soluble chitosan nanoparticle for the effective delivery of lipophilic drugs: a review’, Int. J. Appl. Pharm., 2013, 5, (3), pp. 16.
    26. 26)
      • 2. Lee, J.H., Jin, H., Shim, H.E., et al: ‘Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal’, Mol. Pharmacol., 2010, 77, (1), pp. 1725.
    27. 27)
      • 13. Fangueiro, J.F., Calpena, A.C., Clares, B., et al: ‘Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and ex vivo studies’, Int. J. Pharm., 2016, 502, (1–2), pp. 161169.
    28. 28)
      • 26. Manikkam, R., Pitchai, D.: ‘Catechin loaded chitosan nanoparticles as a novel drug delivery system for cancer – synthesis and in vitro and in vivo characterization’, World J. Pharm. Pharm. Sci., 2014, 3, (2), pp. 15531577.
    29. 29)
      • 24. Honary, S., Zahir, F.: ‘Effect of zeta potential on the properties of nano-drug delivery systems – a review (part 1)’, Trop. J. Pharm. Res., 2013, 12, (2), pp. 255264.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0298
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address