access icon free Biosynthesis of waste pistachio shell supported silver nanoparticles for the catalytic reduction processes

Silver nanoparticles (NPs) are immobilised on pistachio shell surface by Cichorium intybus L. leaves extract as an antioxidant media. The Fourier transform infrared spectra, X-ray diffraction, field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, and transmission electron microscope analyses confirmed the support of silver NPs on the pistachio shell (Ag NPs/pistachio shell). Ag NPs on the pistachio shell had a diameter basically in the 10–15 nm range. Reduction reactions of 4-nitrophenol (4-NP), and organic dyes at ambient condition were used in the investigation of the catalytic performance of the prepared catalyst. Through this research, the Ag NPs/pistachio shell shows a high activity and recyclability, and reusability without loss of its catalytic activity.

Inspec keywords: nanoparticles; catalysts; Fourier transform infrared spectra; catalysis; silver; field emission scanning electron microscopy; dyes; nanofabrication; X-ray diffraction; X-ray chemical analysis; reduction (chemical); transmission electron microscopy

Other keywords: catalytic activity; pistachio shell surface; waste pistachio shell; catalytic performance; energy-dispersive X-ray spectroscopy; Cichorium intybus L. leaves extract; transmission electron microscope analyses; field-emission scanning electron microscopy; catalytic reduction processes; silver nanoparticles; infrared spectra; Ag; antioxidant media; X-ray diffraction; size 10.0 nm to 15.0 nm; reduction reactions

Subjects: Infrared and Raman spectra and scattering (condensed matter); Optical properties of thin films, low-dimensional and nanoscale structures; Electromagnetic radiation spectrometry (chemical analysis); Heterogeneous catalysis at surfaces and other surface reactions; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Other methods of nanofabrication

References

    1. 1)
      • 27. Sastry, A.B.S., Karthik Aamanchi, R.B., Sree Rama Linga Prasad, C., et al: ‘Large-scale green synthesis of Cu nanoparticles’, Environ. Chem. Lett., 2013, 11, pp. 183187.
    2. 2)
      • 44. Wang, Z., Xu, C., Gao, G., et al: ‘Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction’, RSC Adv., 2014, 4, pp. 1364413651.
    3. 3)
      • 22. Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M.: ‘Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red’, J. Alloys Compd., 2016, 680, pp. 309314.
    4. 4)
      • 39. Yeganeh-Faal, A., Bordbar, M., Negahdar, N., et al: ‘Green synthesis of the Ag/ZnO nanocomposite using Valeriana officinalis L. root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time’, IET Nanobiotechnol., 2017, pp. 669676.
    5. 5)
      • 54. Jiang, Z.-J., Liu, C.-Y., Sun, L.-W.: ‘Catalytic properties of silver nanoparticles supported on silica spheres’, J. Phys. Chem. B, 2005, 109, pp. 17301735.
    6. 6)
      • 52. Ghosh, B.K., Hazra, S., Naik, B., et al: ‘Preparation of Ru nanocatalysts supported on SBA-15 and their excellent catalytic activity towards decolorization of various dyes’, J. Nanosci. Nanotechnol., 2015, 15, pp. 65166523.
    7. 7)
      • 10. Kolya, H., Maiti, P., Pandey, A., et al: ‘Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract’, J. Anal. Sci. Technol., 2015, 6, p. 1.
    8. 8)
      • 36. Hashemian, S., Shayegan, J.: ‘A comparative studyof cellulose agricultural wastes (almond shell, pistachio shell, walnut shell, tea waste and orange peel) for adsorption of violet B dye from aqueous solutions’, Orient. J. Chem., 2014, 30, pp. 20912098.
    9. 9)
      • 16. Bordbar, M.: ‘Biosynthesis of Ag/almond shell nanocomposite as a cost-effective and efficient catalyst for degradation of 4-nitrophenol and organic dyes’, RSC Adv., 2017, 7, pp. 180189.
    10. 10)
      • 17. Zargar, M., Hamid, A.A., Bakar, F.A., et al: ‘Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.’, Molecules, 2011, 16, p. 6667.
    11. 11)
      • 32. Mulabagal, V., Wang, H., Ngouajio, M., et al: ‘Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties’, Eur. Food Res. Technol., 2009, 230, pp. 4753.
    12. 12)
      • 31. Kim, M., Shin, H.K.: ‘The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats’, J. Nutr., 1996, 126, p. 2236.
    13. 13)
      • 1. Castro, F.D., Bassin, J.P., Dezotti, M.: ‘Treatment of a simulated textile wastewater containing reactive orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products’, Environ. Sci. Pollut. Res., 2017, 24, pp. 63076316.
    14. 14)
      • 2. Ilyas, S., Rehman, A.: ‘Decolorization and detoxification of synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp.’, Iran. J. Environ. Health Sci. Eng., 2013, 10, p. 1.
    15. 15)
      • 38. Hatamifard, A., Nasrollahzadeh, M., Sajadi, S.M.: ‘Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature’, New J. Chem., 2016, 40, pp. 25012513.
    16. 16)
      • 3. Bordbar, M., Vasegh, S.M., Jafari, S., et al: ‘Optical and photocatalytic properties undoped and Mn-doped ZnO nanoparticles synthesized by hydrothermal method: effect of annealing temperature’, Iran. J. Catal., 2015, 5, pp. 135141.
    17. 17)
      • 24. Nasrollahzadeh, M., Sajadi, S.M., Hatamifard, A.: ‘Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites’, Appl. Catal. B Environ., 2016, 191, pp. 209227.
    18. 18)
      • 46. Kalbasi, R.J., Nourbakhsh, A.A., Babaknezhad, F.: ‘Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds’, Catal. Commun., 2011, 12, pp. 955960.
    19. 19)
      • 14. Zhao, X., Li, Q., Ma, X., et al: ‘Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol’, RSC Adv., 2015, 5, pp. 4953449540.
    20. 20)
      • 5. Aditya, T., Pal, A., Pal, T.: ‘Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts’, Chem. Commun., 2015, 51, pp. 94109431.
    21. 21)
      • 28. Basu, S., Maji, P., Ganguly, J.: ‘Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis’, Appl. Nanosci., 2016, 6, pp. 15.
    22. 22)
      • 30. Atta, A.H., Elkoly, T.A., Mouneir, S.M., et al: ‘Hepatoprotective effect of methanol extracts of Zingiber officinale and Cichorium intybus’, Indian J. Pharm. Sci., 2010, 72, pp. 564570.
    23. 23)
      • 47. Wang, Z.-Z., Zhai, S.-R., Zhang, F., et al: ‘‘Green’ synthesis of magnetic core–shell Fe3O4@ SN–Ag towards efficient reduction of 4-nitrophenol’, J. Sol-Gel Sci. Technol., 2015, 73, pp. 299305.
    24. 24)
      • 12. Bordbar, M., Mortazavimanesh, N.: ‘Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time’, Environ. Sci. Pollut. Res., 2017, 24, pp. 40934104.
    25. 25)
      • 25. Abedini Najafabadi, M.A., Khorasani, S.N., Esfahani, J.M.: ‘Water absorption behaviour and mechanical properties of high density polyethylene/pistachio shell flour nanocomposites in presence of two different UV stabilizer’, Polym. Polym. Compos., 2014, 22, pp. 409416.
    26. 26)
      • 49. Khan, M.M., Lee, J., Cho, M.H.: ‘Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect’, J. Ind. Eng. Chem., 2014, 20, pp. 15841590.
    27. 27)
      • 34. Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G.: ‘Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye’, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 161, pp. 122129.
    28. 28)
      • 19. Rajesh, R., Venkatesan, R.: ‘Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics’, J. Mol. Catal. A Chem., 2012, 359, pp. 8896.
    29. 29)
      • 18. Momeni, M.M., Ghayeb, Y., Gheibee, S.: ‘Silver nanoparticles decorated titanium dioxide-tungsten trioxide nanotube films with enhanced visible light photo catalytic activity’, Ceram. Int., 2017, 43, pp. 564570.
    30. 30)
      • 42. Abdel-Halim, E.S., El-Rafie, M.H., Al-Deyab, S.S.: ‘Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles’, Carbohydr. Polym., 2011, 85, pp. 692697.
    31. 31)
      • 11. Atarod, M., Nasrollahzadeh, M., Mohammad Sajadi, S.: ‘Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water’, J. Colloid Interface Sci., 2016, 462, pp. 272279.
    32. 32)
      • 40. Bordbar, M., Khodadadi, B., Mollatayefeh, N., et al: ‘Influence of metal (Ag, Cd, Cu)-doping on the optical properties of ZnO nanopowder: variation of band gap’, J. Appl. Chem., 2013, 8, pp. 15.
    33. 33)
      • 13. Zhao, X., Li, Q., Ma, X., et al: ‘The preparation of alginate–AgNPs composite fiber with green approach and its antibacterial activity’, J. Ind. Eng. Chem., 2015, 24, pp. 188195.
    34. 34)
      • 55. Yang, X., Zhong, H., Zhu, Y., et al: ‘Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles’, J. Mater. Chem. A, 2014, 2, pp. 90409047.
    35. 35)
      • 8. Banerjee, A., Hamnabard, N., Joo, S.W.: ‘Synthesis of amorphous manganese oxide nanoparticle-to-crystalline nanorod through a simple wet-chemical technique using K+ ion as ‘growth director'and the morphology-controlled high performance supercapacitor applications’, RSC Adv., 2016, 6, pp. 7888778908.
    36. 36)
      • 21. Sreekanth, T.V.M., Jung, M.-J., Eom, I.-Y.: ‘Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity’, Appl. Surf. Sci., 2016, 361, pp. 102106.
    37. 37)
      • 4. Khodadadi, B., Bordbar, M., Yeganeh-Faal, A.: ‘Optical, structural, and photocatalytic properties of Cd-doped ZnO powders prepared via sol–gel method’, J. Sol-Gel Sci. Technol., 2016, 77, pp. 521527.
    38. 38)
      • 9. Hatamifard, A., Nasrollahzadeh, M., Sajadi, S.M.: ‘Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base-and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature’, New J. Chem., 2016, 40, pp. 25012513.
    39. 39)
      • 50. Hatamifard, A., Nasrollahzadeh, M., Lipkowski, J.: ‘Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time’, RSC Adv., 2015, 5, pp. 9137291381.
    40. 40)
      • 35. Konsolakis, M., Kaklidis, N., Marnellos, G.E., et al: ‘Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell’, RSC Adv., 2015, 5, pp. 7339973409.
    41. 41)
      • 7. Wei, L., Lu, J., Xu, H., et al: ‘Silver nanoparticles: synthesis, properties, and therapeutic applications’, Drug Discov. Today, 2015, 20, pp. 595601.
    42. 42)
      • 37. Peters, B.: ‘Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin’, Fuel Process. Technol., 2011, 92, pp. 19931998.
    43. 43)
      • 26. Dubey, S.P., Lahtinen, M., Sillanpää, M.: ‘Tansy fruit mediated greener synthesis of silver and gold nanoparticles’, Process Biochem., 2010, 45, pp. 10651071.
    44. 44)
      • 51. Gan, Z., Zhao, A., Zhang, M., et al: ‘Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes’, Dalton Trans., 2013, 42, pp. 85978605.
    45. 45)
      • 29. Bais, H.P., Ravishankar, G.A.: ‘Cichorium intybus L – cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects’, J. Sci. Food Agric., 2001, 81, pp. 467484.
    46. 46)
      • 53. Zhang, P., Sui, Y., Wang, C., et al: ‘A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering’, Nanoscale, 2014, 6, pp. 53435350.
    47. 47)
      • 6. Khalil, A.M., Georgiadou, V., Guerrouache, M., et al: ‘Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction’, Polymer, 2015, 77, pp. 218226.
    48. 48)
      • 41. Dong, Z., Le, X., Li, X., et al: ‘Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline’, Appl. Catal. B, Environ., 2014, 158–159, pp. 129135.
    49. 49)
      • 45. Dong, Z., Le, X., Dong, C., et al: ‘Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol’, Appl. Catal. B Environ., 2015, 162, pp. 372380.
    50. 50)
      • 43. Jiang, Z., Xie, J., Jiang, D., et al: ‘Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction’, Cryst. Eng. Commun., 2013, 15, pp. 560569.
    51. 51)
      • 48. Gupta, N., Singh, H.P., Sharma, R.K.: ‘Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect’, J. Mol. Catal. A, Chem., 2011, 335, pp. 248252.
    52. 52)
      • 33. Ahmed, N.: ‘Alloxan diabetes-induced oxidative stress and impairment of oxidative defense system in rat brain: neuroprotective effects of Cichorium intybus’, Int. J. Diabetes Metab., 2009, 17, pp. 105109.
    53. 53)
      • 20. Liu, Z., Yan, J., Miao, Y.-E., et al: ‘Catalytic and antibacterial activities of green-synthesized silver nanoparticles on electrospun polystyrene nanofiber membranes using tea polyphenols’, Compos. B Eng., 2015, 79, pp. 217223.
    54. 54)
      • 15. Bordbar, M., Sharifi-Zarchi, Z., Khodadadi, B.: ‘Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue’, J. Sol-Gel Sci. Technol., 2017, 81, pp. 724733.
    55. 55)
      • 23. Gao, S., Zhang, Z., Liu, K., et al: ‘Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks’, Appl. Catal. B Environ., 2016, 188, pp. 245252.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0266
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0266
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading