http://iet.metastore.ingenta.com
1887

Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extract and evaluation of its antibacterial activity

Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extract and evaluation of its antibacterial activity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low-cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti-bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti-bacterial activity.

References

    1. 1)
      • 1. Soltani Nejad, M., Shahidi Bonjar Gh, H., Khatami, M., et al: ‘In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease’, IET Nanobiotechnol., 2017, 11, (3), pp. 236240.
    2. 2)
      • 2. Singh, D., Rathod, V., Ninganagouda, S., et al: ‘Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. Isolated from curcuma longa (turmeric) and its antibacterial activity against pathogenic Gram negative bacteria’, J. Pharm. Res., 2013, 7, (5), pp. 448453.
    3. 3)
      • 3. Roco, M.C.: ‘Nanotechnology: convergence with modern biology and medicine’, Curr. Opin. Biotechnol., 2003, 14, (3), pp. 337346.
    4. 4)
      • 4. Sahoo, S., Parveen, S., Panda, J.: ‘The present and future of nanotechnology in human health care’, Nanomed. Nanotechnol. Biol. Med., 2007, 3, (1), pp. 2031.
    5. 5)
      • 5. Ernest, H., Shetty, R.: ‘Impact of nanotechnology on biomedical sciences: review of current concepts on convergence of nanotechnology with biology’, J. Nanotechnol., 2005, 1, pp. 114.
    6. 6)
      • 6. Kulkarni, N., Uday, M.: ‘Biosynthesis of metal nanoparticles: a review’, J. Nanotechnol., 2014, 2014, pp. 18.
    7. 7)
      • 7. Sharma, V.K., Yngard, R.A., Lin, Y.: ‘Silver nanoparticles: green synthesis and their antimicrobial activities’, Adv. Colloid Interface Sci., 2009, 145, (1), pp. 8396.
    8. 8)
      • 8. Awwad, A.M., Salem, N.M., Abdeen, A.O.: ‘Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity’, Int. J. Ind. Chem., 2013, 4, (1), pp. 16.
    9. 9)
      • 9. Krishnaraj, C., Jagan, E., Rajasekar, S., et al: ‘Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens’, Colloids Surf. B: Biointerfaces, 2010, 76, (1), pp. 5056.
    10. 10)
      • 10. Ankamwar, B.: ‘Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa’, J. Chem., 2010, 7, (4), pp. 13341339.
    11. 11)
      • 11. Leela, A., Vivekanandan, M.: ‘Tapping the unexploited plant resources for the synthesis of silver nanoparticles’, Afr. J. Biotechnol., 2008, 7, (17), pp. 31623165.
    12. 12)
      • 12. Khan, M., Khan, M., Adil, S.F., et al: ‘Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract’, Int. J. Nanomed., 2013, 8, pp. 15071516.
    13. 13)
      • 13. Shameli, K., Ahmad, M.B., Zamanian, A., et al: ‘Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder’, Int. J. Nanomed., 2012, 7, pp. 56035610.
    14. 14)
      • 14. Allafchin, A.R., Jalali, S.A.H.: ‘Synthesis, characterization and antibacterial effect of poly (acrylonitrile/malice acid) – silver nanocomposite’, J. Taiwan Inst. Chem. Eng., 2015, 57, pp. 154159.
    15. 15)
      • 15. Vithiya, K., Sen, S.: ‘Biosynthesis of nanoparticles’, Int. J. Pharm. Sci. Res., 2011, 2, pp. 27812785.
    16. 16)
      • 16. Jain, N., Bhargava, A., Majumdar, S., et al: ‘Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective’, Nanoscale, 2011, 3, (2), pp. 635641.
    17. 17)
      • 17. Song, J.Y., Kim, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, (1), pp. 7984.
    18. 18)
      • 18. Bar, H., Bhui, D.K., Sahoo, G.P., et al: ‘Green synthesis of silver nanoparticles using seed extract of Jatropha curcas’, Colloids Surf. A: Physicochem. Eng. Asp., 2009, 348, (1–3), pp. 212216.
    19. 19)
      • 19. Tripathy, A., Raichur, A.M., Chandrasekaran, N., et al: ‘Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (neem) leaves’, J. Nanopart. Res., 2010, 12, pp. 237246.
    20. 20)
      • 20. Veerasamy, R., Xin, T.Z., Gunasagaran, S., et al: ‘Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities’, J. Saudi Chem. Soc., 2011, 15, (2), pp. 113120.
    21. 21)
      • 21. Gopinath, V., MubarakAli, D., Priyadarshini, S., et al: ‘Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach’, Colloids Surf. B: Biointerfaces, 2012, 96, pp. 6974.
    22. 22)
      • 22. Bathrinarayanan, P.V., Thangavelu, D., Muthukumarasamy, V.K., et al: ‘Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus’, Bull. Mater. Sci., 2013, 36, (7), pp. 12011205.
    23. 23)
      • 23. Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E.A., et al: ‘Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction’, Molecules, 2012, 17, pp. 85068517.
    24. 24)
      • 24. Mohanpuria, P., Rana, N.K., Yadav, S.K.: ‘Biosynthesis of nanoparticles: technological concepts and future applications’, J. Nanopart. Res., 2008, 10, pp. 507517.
    25. 25)
      • 25. Kulkarni, A.P., Srivastava, A.A., Nagalgaon, R.K., et al: ‘Phytofabrication of silver nanoparticles from a novel plant source and its application’, Int. J. Biol. Pharm. Res., 2012, 3, (3), pp. 417421.
    26. 26)
      • 26. Li, Y., Duan, X., Qian, Y.: ‘Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam’, J. Colloid Interface Sci., 1999, 209, (2), pp. 347349.
    27. 27)
      • 27. Basu, S., Priyankar, M, Jhuma, G.: ‘Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of nyctanthes arbor-tristis’, Appl. Nanosci., 2016, 6, (1), pp. 15.
    28. 28)
      • 28. Jha, A.K., Prasad, K.: ‘Green synthesis of silver nanoparticles using Cycas leaf’, Int. J. Green Nanotechnol. Phys. Chem., 2010, 1, (2), pp. 110117.
    29. 29)
      • 29. Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., et al: ‘Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles’, Langmuir, 2003, 19, (4), pp. 13571361.
    30. 30)
      • 30. Zandpour, F., Allafchian, A.R., Vahabi, M.R, et al: ‘The green synthesis of silver nanoparticles with the arial part of Dorema ammoniacum D. Extract by antimicrobial analysis’, IET Nanobiotechnol., doi: 10.1049/iet-nbt.2017.0216.
    31. 31)
      • 31. Shankar, S.S., Ahmad, A., Sastry, M.: ‘Geranium leaf assisted biosynthesis of silver nanoparticles’, Biotechnol. Prog., 2003, 19, (6), pp. 16271631.
    32. 32)
      • 32. Parashar, V., Parashar, R., Sharma, B., et al: ‘Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization’, Dig. J. Nanomater. Biostruct., 2009, 4, (1), pp. 4550.
    33. 33)
      • 33. Sathishkumar, M., Sneha, K., Won, S.W., et al: ‘Cinnamomum zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity’, Colloids Surf. B: Biointerfaces, 2009, 73, (2), pp. 332338.
    34. 34)
      • 34. Benakashani, F., Allafchian, A.R., Jalali, S.A.H.: ‘Green synthesis, characterization and antibacterial activity of silver nanoparticles from root extract of lepidium draba weed’, Green Chem. Lett. Rev., 2017, 10, (4), pp. 324330.
    35. 35)
      • 35. Allafchian, A.R., Farhang, H., Jalali, S.A.H., et al: ‘Gundelia tournefortii L.: a natural source for the green synthesis of silver nanoparticles’, IET Nanobiotechnol., 2017, 11, (7), pp. 815820.
    36. 36)
      • 36. Philip, D.: ‘Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles’, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2011, 78, (1), pp. 327331.
    37. 37)
      • 37. Allafchian, A.R., Mirahmadi-Zare, S.Z., Jalali, S.A.H., et al: ‘Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity’, J. Nanostruct. Chem., 2016, 6, (2), pp. 129135.
    38. 38)
      • 38. Kathiravan, V., Ravi, S., Ashokkumar, S., et al: ‘Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities’, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 139, pp. 200205.
    39. 39)
      • 39. Chen, S., Webster, S., Czerw, R., et al: ‘Morphology effects on the optical properties of silver nanoparticles’, J. Nanosci. Nanotechnol., 2004, 4, (3), pp. 254259.
    40. 40)
      • 40. Raza, M.A., Kanwal, Z., Rauf, A., et al: ‘Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes’, Nanomaterials, 2016, 6, (4), pp. 115.
    41. 41)
      • 41. Henglein, A.: ‘Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition’, J. Phys. Chem., 1993, 97, (21), pp. 54575471.
    42. 42)
      • 42. Joseph, S., Mathew, B.: ‘Microwave–assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes’, J. Mol. Liq., 2015, 204, pp. 184191.
    43. 43)
      • 43. Kumar, P.V., Pammi, S., Kollu, P., et al: ‘Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterialactivity’, Ind. Crops Prod., 2014, 52, pp. 562566.
    44. 44)
      • 44. Kumar, S., Singh, M., Halder, D., et al: ‘Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids’, Colloids Surf. A: Physicochem. Eng. Asp., 2014, 449, pp. 8286.
    45. 45)
      • 45. Kocanci, F.G., Hamamcioglu, B., Aslim, B.: ‘The anti-AChE and anti-proliferative activities of Glaucium acutidentatum and Glaucium corniculatum alkaloid extracts’, J. Appl. Pharm. Sci., 2017, 7, (08), pp. 191200.
    46. 46)
      • 46. Shafiee, A., Ghanbarpour, A., Aknlaghi, S.: ‘Alkaloids of papaveraceae, XII Alkaloids of Glaucium corniculatum sucspecies reflactum, population Pol-dokhtar’, J. Netural Prod., 1985, 48, (5), pp. 855856.
    47. 47)
      • 47. Novak, V., Dolejs, L., Slavik, J.: ‘Alkaloids of the papaveraceae. XLVIII. (-) Stylopine methohydroxide, a new alkaloid from Glaucium corniculatum CURT. Collection czechoslov.’, Chem. Commun., 1971, 37, (8), pp. 28042806.
    48. 48)
      • 48. Rajeshkumar, S., Malarkodi, C.: ‘In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens’, Bioinorg. Chem. Appl., 2014, 2014, pp. 110.
    49. 49)
      • 49. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, (10), pp. 23462353.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0265
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0265
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address