access icon free One-pot green synthesis and structural characterisation of silver nanoparticles using aqueous leaves extract of Carissa carandas: antioxidant, anticancer and antibacterial activities

Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X-ray spectroscopy. X-ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH-7) and renal cell lines (HEK-293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin-resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.

Inspec keywords: field emission scanning electron microscopy; thermal analysis; nanofabrication; tumours; antibacterial activity; cellular biophysics; nanoparticles; free radical reactions; toxicology; reduction (chemical); nanomedicine; visible spectra; cancer; biomedical materials; microorganisms; Fourier transform infrared spectra; thermal stability; X-ray diffraction; silver; ultraviolet spectra; X-ray chemical analysis

Other keywords: field emission scanning electron microscope; renal cell lines HEK-293; free radical scavenging activities; anticancer activities; thermogravimetric analysis; hepatic cell lines HUH-7; ferric reducing antioxidant power assay; X-ray diffraction; Carissa carandas; methicillin-resistant Staphylococcus aureus; absorption maxima; biofabrication; distinctive peak; Shigella sonnei; total phenolic contents; reducing agent; antibacterial activity; one-pot green synthesis; silver nanoparticles; plant extract colour; face-centred cubic structure; energy dispersive X-ray spectroscopy; UV-visible spectroscopy; aqueous leaves extract; structural characterisation; Ag; antioxidant activities; bioactive molecules; thermal stability; total flavonoid contents; antibacterial activities; stabilising agent; in vitro biological application; 2,2-diphenyl-1-picrylhydrazyl test; Shigella boydii; Salmonella typhimurium; Fourier transforms infrared spectroscopy; in vitro cytotoxicity; spherical shape

Subjects: Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Electromagnetic radiation spectrometry (chemical analysis); Biomedical materials; Nanotechnology applications in biomedicine; Visible and ultraviolet spectra of metals, semimetals, and alloys; Atom and radical reactions (with themselves or with molecules); Infrared and Raman spectra in metals; Other methods of nanofabrication; Cellular biophysics

References

    1. 1)
      • 31. Zia, F., Ghafoor, N., Iqbal, M., et al: ‘Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract’, Appl. Nanosci., 2016, 6, (7), pp. 10231029.
    2. 2)
      • 33. Carvalho, E.A., Freitas, A.M., Silva, G.H., et al: ‘Thermal and structural analysis of germinate glass and thin films co-doped with silver nanoparticles and rare earth ions with insights from visible and Raman spectroscopy’, Vib. Spectrosc., 2016, 87, pp. 143148.
    3. 3)
      • 4. Bilal, M., Rasheed, T., Iqbal, H.M.N., et al: ‘Silver nanoparticles: biosynthesis and antimicrobial potentialities’, Int. J. Pharmacology, 2017, 13, pp. 832845.
    4. 4)
      • 17. Saeed, N., Khan, M.R., Shabbir, M.: ‘Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L’, BMC Complement. Altern. Med., 2012, 12, (1), p. 1174.
    5. 5)
      • 50. Patra, J.K., Das, G., Baek, K.H.: ‘Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy’, J. Photochem. Photobiol. B, Biol., 2016, 161, pp. 200210.
    6. 6)
      • 38. Moteriya, P., Padalia, H., Chanda, S.: ‘Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract’, J. Genet. Eng. Biotechnol., 2017, 15, (2), pp. 505513.
    7. 7)
      • 32. Khan, M.A.M., Kumar, S., Ahamed, M., et al: ‘Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films’, Nanoscale Res. Lett., 2011, 6, pp. 18.
    8. 8)
      • 19. Shekhar, T.C., Anju, G.: ‘Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves’, Am. J. Ethnomed., 2014, 1, (4), pp. 244249.
    9. 9)
      • 39. Li, Y., Ma, D., Sun, D., et al: ‘Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods’, Crop J., 2015, 3, (4), pp. 328334.
    10. 10)
      • 23. Yallappa, S., Manjanna, J., Peethambar, S.K., et al: ‘Green synthesis of silver nanoparticles using Acacia farnesiana (Sweet Acacia) seed extract under microwave irradiation and their biological assessment’, J. Cluster Sci., 2013, 24, (4), pp. 10811092.
    11. 11)
      • 37. Ingle, A., Rai, M., Gade, A., et al: ‘Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles’, J. Nanoparticle Res., 2009, 11, (8), pp. 20792085.
    12. 12)
      • 12. Azeez, S., Karunakaran, G., Tripathi, P.C., et al: ‘Evaluation of antioxidant activity, total phenolics and phytochemical content of selected varieties of karonda fruits (Carissa carandas)’, Indian J. Agric. Sci., 2016, 86, (6), pp. 815822.
    13. 13)
      • 25. Bhakya, S., Muthukrishnan, S., Sukumaran, M., et al: ‘Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity’, Appl. Nanosci., 2016, 6, (5), pp. 755766.
    14. 14)
      • 2. Ahmed, S., Ahmad, M., Swami, B.L., et al: ‘A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise’, J. Adv. Res., 2016, 7, pp. 1728.
    15. 15)
      • 13. Begum, S., Syed, S.A., Siddiqui, B.S., et al: ‘Carandinol: first isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines’, Phytochem. Lett., 2013, 6, (1), pp. 9195.
    16. 16)
      • 35. Perugu, S., Nagati, V., Bhanoori, M.: ‘Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study’, Appl. Nanosci., 2016, 6, (5), pp. 747753.
    17. 17)
      • 22. Yamini, S.G.: ‘Green synthesis of silver nanoparticles from Cleome viscosa: synthesis and antimicrobial activity’. 2011 Int. Conf. on Bioscience, Biochemistry and Bioinformatics, Singapore, 2011, vol. 5, pp. 334337.
    18. 18)
      • 24. Sumi Maria, B., , Devadiga, A., Shetty Kodialbail, V., et al: ‘Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract’, Appl. Nanosci., 2015, 5, (6), pp. 755762.
    19. 19)
      • 27. MubarakAli, D., Thajuddin, N., Jeganathan, K., et al: ‘Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens’, Colloids Surf. B, Biointerfaces, 2011, 85, (2), pp. 360365.
    20. 20)
      • 8. Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., et al: ‘Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties’, Biotechnol. Rep., 2017, 14, pp. 17.
    21. 21)
      • 15. Jeeva, K., Thiyagarajan, M., Elangovan, V., et al: ‘Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens’, Ind. Crops Prod., 2014, 52, pp. 714720.
    22. 22)
      • 18. Barku, V.Y.A., Opoku-Boahen, Y., Owusu-Ansah, E., et al: ‘Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus’, Asian J. Plant Sci. Res., 2013, 3, (1), pp. 6974.
    23. 23)
      • 21. Krishnaraj, C., Jagan, E.G., Rajasekar, S., et al: ‘Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens’, Colloids Surf. B, Biointerfaces, 2010, 76, (1), pp. 5056.
    24. 24)
      • 42. Benzie, I.F.F., Strain, J.J.: ‘The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay’, Anal. Biochem., 1996, 239, (1), pp. 7076.
    25. 25)
      • 28. Raja, S., Ramesh, V., Thivaharan, V.: ‘Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability’, Arab. J. Chem., 2017, 10, (2), pp. 253261.
    26. 26)
      • 1. Lee, H.J., Lee, G., Jang, N.R., et al: ‘Biological synthesis of copper nanoparticles using plant extract’, Une, 2016, 13, p. 15.
    27. 27)
      • 40. Sharma, O.P., Bhat, T.K.: ‘DPPH antioxidant assay revisited’, Food Chem., 2009, 113, (4), pp. 12021205.
    28. 28)
      • 7. Azizi, M., Ghourchian, H., Yazdian, F., et al: ‘Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line’, Sci. Rep., 2017, 7, (1), pp. 17.
    29. 29)
      • 6. Rasheed, T., Bilal, M., Iqbal, H.M.N., et al: ‘Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications’, Colloids Surf. B, Biointerfaces, 2017, 158.
    30. 30)
      • 45. Piao, M.J., Kang, K.A., Lee, I.K., et al: ‘Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis’, Toxicol. Lett., 2011, 201, (1), pp. 92100.
    31. 31)
      • 11. Sarma, A., Sarmah, P., Kashyap, D., et al: ‘Antioxidant activity and nutraceutical property of the fruits of an ethno-medicinal plant: Carissa carandas L. found in Brahmaputra valley agro-climatic condition’, J. Pharm. Sci. Res., 2015, 7, (2), pp. 5557.
    32. 32)
      • 46. Bilal, M., Rasheed, T., Iqbal, H.M.N., et al: ‘Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities’, Int. J. Biol. Macromol., 2017, 105, pp. 393400.
    33. 33)
      • 10. Khatun, M., Habib, M.R., Rabbi, M.A., et al: ‘Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. Leaves’, Exp. Toxicol. Pathol., 2017, 69, (7), pp. 469476.
    34. 34)
      • 26. Paulkumar, K., Gnanajobitha, G., Vanaja, M., et al: ‘Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens’, Sci. World J., 2014, 2014, Article ID 829894.
    35. 35)
      • 3. El-Feky, G.S., Sharaf, S.S., El Shafei, A., et al: ‘Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing’, Carbohydr. Polym., 2017, 158, pp. 1119.
    36. 36)
      • 29. Bankar, A., Joshi, B., Kumar, A.R., et al: ‘Banana peel extract mediated novel route for the synthesis of silver nanoparticles’, Colloids Surf. A, Physicochem. Eng. Aspects, 2010, 368, (1-3), pp. 5863.
    37. 37)
      • 44. Kim, S., Choi, I.H.: ‘Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages’, Yonsei Med. J., 2012, 53, (3), pp. 654657.
    38. 38)
      • 43. Mahendran, G., Ranjitha Kumari, B.D.: ‘Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts’, Food Sci. Human Wellness, 2016, 5, (4), pp. 207218.
    39. 39)
      • 41. Xie, J., Schaich, K.M.: ‘Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity’, J. Agric. Food Chem., 2014, 62, (19), pp. 42514260.
    40. 40)
      • 14. Singh, A., Uppal, G.K.: ‘A review on Carissa carandas – phytochemistry, ethno-pharmacology, and micropropagation as conservation strategy’, Asian J. of Pharm. and Clinical Research, 2015, 8, pp. 2630.
    41. 41)
      • 16. Kuppusamy, P., Yusoff, M.M., Maniam, G.P., et al: ‘Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report’, Saudi Pharm. J.2016, 24, pp. 473484.
    42. 42)
      • 49. Patra, J.K., Baek, K.H.: ‘Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects’, Front. Microbiol., 2017, 8, pp. 167176.
    43. 43)
      • 30. Ahmad, N., Sharma, S.: ‘Green synthesis of silver nanoparticles using extracts of Ananas comosus’, Green Sustain. Chem., 2012, 2, pp. 141147.
    44. 44)
      • 47. Marambio-Jones, C., Hoek, E.M. V.: ‘A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment’, J. Nanoparticle Res., 2010, 12, (5), pp. 15311551.
    45. 45)
      • 36. Dipankar, C., Murugan, S.: ‘The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts’, Colloids Surf. B, Biointerfaces, 2012, 98, pp. 112119.
    46. 46)
      • 48. Umashankari, J., Inbakandan, D., Ajithkumar, T.T., et al: ‘Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens’, Aquat. Biosyst., 2012, 8, (1), p. 11.
    47. 47)
      • 5. Ahmad, A., Wei, Y., Syed, F., et al: ‘The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles’, Microb. Pathog., 2017, 102, pp. 133142.
    48. 48)
      • 34. Basu, S., Maji, P., Ganguly, J.: ‘Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis’, Appl. Nanosci., 2016, 6, (1), pp. 15.
    49. 49)
      • 20. Betancur-Galvis, L., Morales, G., Forero, J., et al: ‘Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the euphorbia genus’, Mem. Inst. Oswaldo Cruz Rio de Janeiro, 2002, 97, (4), pp. 541546.
    50. 50)
      • 9. Nayak, D., Minz, A.P., Ashe, S., et al: ‘Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines’, J. Colloid Interface Sci., 2016, 470, pp. 142152.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0261
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0261
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading