access icon free Core/shell nanoassembly of amphiphilic naproxen-polyethylene glycol: synthesis, characterisation and evaluation as drug delivery system

Small molecule-based amphiphiles self-assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen-polyethylene glycol (N-PEG), a small molecule-derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1H, 13C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of N-PEG and dynamic light scattering (DLS) revealed the formation of nano-sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar-structured N-PEG was demonstrated by lipase-mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well-known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N-PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.

Inspec keywords: cellular biophysics; nanocomposites; biodegradable materials; drug delivery systems; drugs; Fourier transform infrared spectra; nanofabrication; enzymes; biochemistry; hydrophobicity; colloids; proton magnetic resonance; nanoparticles; transmission electron microscopy; molecular biophysics; self-assembly; nanomedicine; encapsulation; mass spectroscopic chemical analysis; light scattering; cancer; core-shell nanostructures; biomedical materials

Other keywords: small molecule-derived amphiphile; small molecule-based amphiphiles self-assemble; 13C NMR; MS; hydrophobic drug carrier; nanosized structures; N-PEG micelles; lipase-mediated degradation studies; 1H NMR; encapsulation efficiency; cancerous cells; amphiphilic naproxen-polyethylene glycol; biodegradability aspect; aggregation behaviour; core/shell nanoassembly; transmission electron microscope analysis; drug delivery system; dynamic light scattering; doxorubicin; FTIR

Subjects: Mass spectrometry (chemical analysis); Nanotechnology applications in biomedicine; Patient care and treatment; Cellular biophysics; Self-assembly in nanofabrication; Physical chemistry of biomolecular solutions and condensed states; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biomedical materials; Patient care and treatment; Colloids

References

    1. 1)
      • 36. Blanco, E., Kessinger, C.W., Sumer, B.D., et al: ‘Multifunctional micellar nanomedicine for cancer therapy’, Exp. Biol. Med. (Maywood), 2009, 234, pp. 123131.
    2. 2)
      • 10. Riehemann, K., Schneider, S.W., Luger, T.A., et al: ‘Nanomedicine – challenge and perspectives’, Angew. Chem. Int. Ed. Engl., 2009, 48, pp. 872897.
    3. 3)
      • 16. Martin, C., Aibani, N., Callan, J.F.: ‘Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs’, Ther. Deliv., 2016, 7, pp. 1531.
    4. 4)
      • 19. Forte, G., Chiarotto, I., Giannicchi, I., et al: ‘Characterization of naproxen–polymer conjugates for drug-delivery’, J. Biomater. Sci. Polym. Ed., 2016, 27, pp. 6985.
    5. 5)
      • 8. Torchilin, V.P.: ‘Targeted polymeric micelles for delivery of poorly soluble drugs’, Cell. Mol. Life Sci., 2004, 61, pp. 25492559.
    6. 6)
      • 29. Sheng, Y., Yuan, Y., Liu, C., et al: ‘In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content’, J. Mater. Sci. Mater. Med., 2009, 20, pp. 18811891.
    7. 7)
      • 7. Shukla, S.K., Shukla, S.K., Govender, P.P., et al: ‘Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges’, RSC Adv., 2016, 6, pp. 9432594351.
    8. 8)
      • 26. Wang, Y., Chang, B., Yang, W.: ‘pH-sensitive polyketal nanoparticles for drug delivery’, J. Nanosci. Nanotechnol., 2012, 12, pp. 82668275.
    9. 9)
      • 3. Emeje, M.O., Obidike, I.C., Akpabio, E.I., et al: ‘Nanotechnology in drug delivery’, in Sezer, A.D. (Ed.) Recent Advances in Novel Drug Carrier Systems, (InTech Press, UK, 2012), pp. 69106.
    10. 10)
      • 32. Lalatsa, A., Schätzlein, A.G., Mazza, M., et al: ‘Amphiphilic poly(L-amino acids) – new materials for drug delivery’, J. Control. Release, 2012, 161, pp. 523536.
    11. 11)
      • 33. Fichman, G., Gazit, E.: ‘Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications’, Acta Biomater., 2014, 10, pp. 16711682.
    12. 12)
      • 6. Vauthier, C., Dubernet, C., Fattal, E., et al: ‘Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications’, Adv. Drug Deliv. Rev., 2003, 55, pp. 519548.
    13. 13)
      • 35. Morachis, J.M., Mahmoud, E.A., Almutairi, A.: ‘Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles’, Pharmacol. Rev., 2012, 64, pp. 505519.
    14. 14)
      • 9. Lobatto, M.E., Fuster, V., Fayad, Z.A., et al: ‘Perspectives and opportunities for nanomedicine in the management of atherosclerosis’, Nat. Rev. Drug Discov., 2011, 10, pp. 835852.
    15. 15)
      • 2. Zhang, L., Gu, F.X., Chan, J.M., et al: ‘Nanoparticles in medicine: therapeutic applications and developments’, Clin. Pharmacol. Ther., 2008, 83, pp. 761769.
    16. 16)
      • 34. Charoenphol, P., Bermudez, H.: ‘Aptamer-targeted DNA nanostructures for therapeutic delivery’, Acta Biomater., 2014, 10, pp. 16831691.
    17. 17)
      • 22. Cuong, N.V., Jiang, J.L., Li, Y.L., et al: ‘Doxorubicin-loaded PEG-PCL-PEG micelle using xenograft model of nude mice: effect of multiple administration of micelle on the suppression of human breast cancer’, Cancers (Basel), 2010, 3, pp. 6178.
    18. 18)
      • 1. Davis, M.E., Chen, Z., Shin, D.M.: ‘Nanoparticle therapeutics: an emerging treatment modality for cancer’, Nat. Rev. Drug Discov., 2008, 7, pp. 771782.
    19. 19)
      • 14. Sachdeva, V., Kataria, M.K.: ‘Enhancement of bioavailability through increase in drug permeation, stability and retention time’, Int. Res. J. Pharm., 2013, 4, pp. 5966.
    20. 20)
      • 15. Ge, Z., Liu, S.: ‘Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance’, Chem. Soc. Rev., 2013, 42, pp. 72897325.
    21. 21)
      • 12. Ding, C., Tong, L., Feng, J., et al: ‘Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment’, Molecules, 2016, 21, p. E1715.
    22. 22)
      • 20. Yu, D., Peng, P., Dharap, S.S., et al: ‘Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo’, J. Control. Release, 2005, 110, pp. 90102.
    23. 23)
      • 17. Sonawane, S.J., Kalhapure, R.S., Govender, T.: ‘Hydrazone linkages in pH responsive drug delivery systems’, Eur. J. Pharm. Sci., 2017, 99, pp. 4565.
    24. 24)
      • 31. Carlsen, A., Lecommandoux, S.: ‘Self-assembly of polypeptide-based block copolymer amphiphiles’, Curr. Opin. Colloid Interface Sci., 2009, 14, pp. 329339.
    25. 25)
      • 5. Hu, X., Jing, X.: ‘Biodegradable amphiphilic polymer-drug conjugate micelles’, Expert Opin. Drug Deliv., 2009, 6, pp. 10791090.
    26. 26)
      • 30. Parveen, S., Sahoo, S.K.: ‘Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery’, Eur. J. Pharmacol., 2011, 670, pp. 372383.
    27. 27)
      • 18. Karami, Z., Sadighian, S., Rostamizadeh, K., et al: ‘Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery’, Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 61, pp. 665673.
    28. 28)
      • 11. Kim, J., Schlesinger, E.B., Desai, T.A.: ‘Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery’, Ther. Deliv., 2015, 6, pp. 13651376.
    29. 29)
      • 27. Wei, W.H., Dong, X.M., Liu, C.G.: ‘In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid’, Int. J. Mol. Sci., 2015, 16, pp. 71957209.
    30. 30)
      • 13. Hsu, B.B., Park, M.H., Hagerman, S.R., et al: ‘Multimonth controlled small molecule release from biodegradable thin films’, Proc. Natl. Acad. Sci. USA, 2014, 111, pp. 1217512180.
    31. 31)
      • 25. Zhang, Y., Yang, C., Wang, W., et al: ‘Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer’, Sci. Rep., 2016, 6, p. 21225.
    32. 32)
      • 23. Cui, Y., Sui, J., He, M., et al: ‘Reduction-degradable polymeric micelles decorated with P-Arg for improving anticancer drug delivery efficacy’, ACS Appl. Mater. Interfaces, 2016, 8, pp. 21932203.
    33. 33)
      • 4. Couvreur, P., Vauthier, C.: ‘Nanotechnology: intelligent design to treat complex disease’, Pharm. Res., 2006, 23, pp. 14171450.
    34. 34)
      • 24. Xu, X., Sabanayagam, C.R., Harrington, D.A., et al: ‘A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics’, Biomaterials, 2014, 35, pp. 33193330.
    35. 35)
      • 21. Melguizo, C., Cabeza, L., Prados, J., et al: ‘Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles’, Drug Des. Dev. Ther., 2015, 9, pp. 64336444.
    36. 36)
      • 28. Chiniforoshan, H., Tabrizi, L., Hadizade, M., et al: ‘Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays’, Spectrochim. Acta Mol. Biomol. Spectrosc., 2014, 128, pp. 183190.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0219
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0219
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading