access icon free Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate Streptomyces enissocaesilis

Nanoparticles (NPs) are gaining special interest due to their recent applications as antimicrobial agents to defeat the massive threat of resistant pathogens. This study focused on the utilisation of Streptomyces isolate S12 purified from waste discharge soil in the biological synthesis of silver (Ag), selenium (Se), and zinc oxide (ZnO) NPs. The isolate S12 was related to Streptomyces enissocaesilis according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The cell-free supernatant has been used for the synthesis of Ag, Se, and ZnO NPs. The synthesised NPs were characterised using ultraviolet–visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy, and Fourier transform infrared spectroscopy. The biogenic NPs were evaluated for antimicrobial effects against different Gram-positive and Gram-negative resistant isolates using the broth microdilution method. They showed antibacterial effect against standard and resistant isolates; Bacillus cereus, Staphylococcus aureus ATCC 29213, S. aureus S1.1, methicillin resistant S. aureus (MRSA 303, 402 and 807), Escherichia coli ATCC 12435, E. coli E7, Klebsiella pneumoniae ATCC 51503, K. pneumoniae K5, K112, Pseudomonas aeruginosa PAO1, and P. aeruginosa P8. This study showed the green synthesis of various NPs using Streptomyces isolate S12 which demonstrated diverse activities against multi-drug resistant isolates.

Inspec keywords: antibacterial activity; visible spectra; nanofabrication; RNA; molecular configurations; silver; nanoparticles; nanomedicine; cellular biophysics; Fourier transform infrared spectra; selenium; molecular biophysics; biomedical materials; ultraviolet spectra; transmission electron microscopy; microorganisms; wide band gap semiconductors; light scattering; zinc compounds; II-VI semiconductors; biochemistry

Other keywords: 16S rRNA sequence analysis; dynamic light scattering; transmission electron microscopy; Klebsiella pneumoniae ATCC 51503; biochemical reactions; biological synthesis; K. pneumoniae K5; cell-free supernatant; antimicrobial agents; Pseudomonas aeruginosa PAO1; antimicrobial activities; methicillin resistant S. aureus MRSA 402; Se; P. aeruginosa P8; Streptomyces isolate S12; broth microdilution method; Gram-negative resistant isolates; Ag; ultraviolet-visible spectroscopy; biogenic NPs; Fourier transform infrared spectroscopy; waste isolate Streptomyces enissocaesilis; ZnO; multidrug resistant isolates; Streptomyces isolate S12 purification; green synthesis; morphological characteristics; resistant pathogens; Gram-positive resistant isolates; Bacillus cereus; Escherichia coli ATCC 12435; methicillin resistant S. aureus MRSA 807; E. coli E7; S. aureus S1.1; nanoparticles; waste discharge soil; Staphylococcus aureus ATCC 29213; methicillin resistant S. aureus MRSA 303

Subjects: Biomolecular structure, configuration, conformation, and active sites; Nanotechnology applications in biomedicine; Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); Macromolecular constitution (chains and sequences); Biomolecular interactions, charge transfer complexes; Visible and ultraviolet spectra of II-VI and III-V semiconductors; Biomedical materials; Ultraviolet molecular spectra; Physical chemistry of biomolecular solutions and condensed states; Visible and ultraviolet spectra of metals, semimetals, and alloys; Electronic structure and spectra of macromolecules; Interactions with radiations at the biomolecular level; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Macromolecular configuration (bonds, dimensions); Cellular biophysics; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Visible molecular spectra

References

    1. 1)
      • 15. Maidak, B.L., Cole, J.R., Lilburn, T.G., et al: ‘The RDP (ribosomal database project) continues’, Nucleic Acids Res., 2000, 1, pp. 173174.
    2. 2)
      • 42. Matos, R.A., Courrol, L.C.: ‘Saliva and light as templates for the green synthesis of silver nanoparticles’, Colloids Surf. A, Physicochem. Eng. Aspects, 2014, 441, pp. 539543.
    3. 3)
      • 5. Mandal, D., Bolander, M.E., Mukhopadhyay, D., et al: ‘The use of microorganisms for formation of metal nanoparticles and their application’, Appl. Environ. Microbiol., 2006, 69, pp. 485492.
    4. 4)
      • 39. Avendaño, R., Chaves, N., Fuentes, P., et al: ‘Production of selenium nanoparticles in Pseudomonas putida KT2440’, Sci. Rep., 2016, 6, p. 37155, http://doi.org/10.1038/srep37155.
    5. 5)
      • 6. Fu, J.K., Liu, Y.Y., Gu, P.Y., et al: ‘Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09’, Acta Phys. Chim. Sin., 2000, 16, pp. 779782.
    6. 6)
      • 26. Bajaj, M., Schmidt, S., Winter, J.: ‘Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. Isolated from Se-laden soil of North-East Punjab, India’, Microb. Cell Fact., 2012, 11, p. 64, doi: 10.1186/1475-2859-11-64.
    7. 7)
      • 44. Wang, L., Hu, C., Shao, L.: ‘The antimicrobial activity of nanoparticles: present situation and prospects for the future’, Int. J. Nanomed., 2017, 12, pp. 12271249.
    8. 8)
      • 2. Sahoo, S.K., Parveen, S., Panda, J.J.: ‘The present and future of nanotechnology in human health care’, Nanomedicine, 2007, 3, (1), pp. 2031.
    9. 9)
      • 49. Sukanya, M., Saju, K., Praseetha, P., et al: ‘Therapeutic potential of biologically reduced silver nanoparticles from actinomycete cultures’, J. Nanosci., 2013, 2013, pp. 18.
    10. 10)
      • 46. Feng, Q.L., Wu, J., Chen, G.Q., et al: ‘Mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2000, 52, pp. 662668.
    11. 11)
      • 10. Sadowski, Z., Maliszewska, H.I., Grochowalska, B., et al: ‘Synthesis of silver nanoparticles using microorganisms’, Mater. Sci., 2008, 26, (2), pp. 419424.
    12. 12)
      • 45. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, pp. 23462353.
    13. 13)
      • 31. Zhang, W., Chen, Z., Liu, H., et al: ‘Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila’, Colloids Surf. B, Biointerfaces, 2011, 88, pp. 196201.
    14. 14)
      • 19. Holt, J.G., Krieg, N.R., Sneath, P.H.A., et al: ‘Bergey's manual of determinative bacteriology’ (Williams and Wilkins, Baltimore, 1994, 9th edn.).
    15. 15)
      • 13. Guisbiers, G., Wang, Q., Khachatryan, E., et al: ‘Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water’, Int. J. Nanomed., 2016, 11, pp. 37313736, doi: 10.2147/IJN.S106289.
    16. 16)
      • 8. Kharissova, O.V., Dias, H.V., Kharisov, B.I., et al: ‘The greener synthesis of nanoparticles’, Trends Biotechnol., 2013, 31, (4), pp. 240248.
    17. 17)
      • 24. Clinical and Laboratory Standards Institute: ‘Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement, M100-S25’, vol. 33 (CLSI, Wayne, PA, USA, 2015).
    18. 18)
      • 28. Sirisha, B., Haritha, R., Jagan Mohan, Y.S.Y.V., et al: ‘Molecular characterization of marine Streptomyces enissocaesilis capable of L-asparaginase production’, Bacteriol. J., 2013, 4, (1), pp. 111.
    19. 19)
      • 1. Rudramurthy, G.R., Swamy, M.K., Sinniah, U.R., et al: ‘Nanoparticles: alternatives against drug-resistant pathogenic microbes’, Molecules, 2016, 21, p. 836.
    20. 20)
      • 12. Hsueh, Y.H., Ke, W.J., Hsieh, C.T., et al: ‘Zno nanoparticles affect Bacillus subtilis cell growth and biofilm formation’, PLoS One, 2015, 10, (6), p. e0128457, doi: 10.1371/journal.pone.0128457. eCollection 2015.
    21. 21)
      • 3. Doria, G., Conde, J., Veigas, B., et al: ‘Noble metal nanoparticles for biosensing applications’, Sensors, 2012, 12, pp. 16571687.
    22. 22)
      • 14. Jeffrey, L.S.H.: ‘Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak’, Afr. J. Biotechnol., 2008, 7, pp. 36973702.
    23. 23)
      • 52. Chudobova, D., Cihalova, K., Dostalova, S., et al: ‘Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection’, FEMS Microbiol. Lett., 2014, 351, (2), pp. 195201.
    24. 24)
      • 27. Tan, Y., Yao, R., Wang, R., et al: ‘Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil’, Microb. Cell Fact., 2016, 15, p. 157, doi: 10.1186/s12934-016-0554-z.
    25. 25)
      • 30. Fesharaki, P.J., Nazari, P., Shakibaie, M., et al: ‘Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process’, Braz. J. Microbiol., 2010, 41, pp. 461466.
    26. 26)
      • 17. Saitou, N., Nei, M.: ‘The neighbor-joining method: a new method for reconstructing phylogenetic trees’, Mol. Biol. Evol., 1987, 4, pp. 406425.
    27. 27)
      • 51. Lemire, J.A., Harrison, J.J., Turner, R.J.: ‘Antimicrobial activity of metals: mechanisms, molecular targets and applications’, Nat. Rev. Microbiol., 2013, 11, pp. 371384.
    28. 28)
      • 11. Manivasagan, P., Venkatesan, J., Sivakumar, K., et al: ‘Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review’, Crit. Rev. Microbiol., 2016, 42, (2), pp. 209221.
    29. 29)
      • 37. Saha, S., Bera, K., Jana, P.C.: ‘Growth time dependence of size of nanoparticle of ZnS’, Int. J. Soft Comput. Eng., 2011, 5, pp. 2326.
    30. 30)
      • 40. Uzzaman, S., Mashrai, A., Khanam, H., et al: ‘Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines’, Arab. J. Chem., 2013, http://dx.doi.org/10.1016/j.arabjc.2013.05.004.
    31. 31)
      • 36. Das, V.L., Thomas, R., Varghese, R.T., et al: ‘Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area’, 3 Biotech, 2014, 4, (2), pp. 121126.
    32. 32)
      • 47. Klueh, U., Wagner, V., Kelly, S., et al: ‘Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation’, J. Biomed. Mater. Res., 2000, 53, pp. 621631.
    33. 33)
      • 29. Sadhasivam, S., Shanmugam, P., Yun, K.: ‘Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms’, Colloids Surf. B, Biointerfaces, 2010, 81, pp. 358362.
    34. 34)
      • 16. Nikodinovic, J., Barrow, K.D., Chuck, J.A.: ‘High yield preparation of genomic DNA from Streptomyces’, Biotechniques, 2003, 35, pp. 932934.
    35. 35)
      • 32. Balraj, B., Senthilkumar, N., Siva, C., et al: ‘Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity’, Res. Chem. Intermed., 2017, 43, pp. 23672376.
    36. 36)
      • 22. Dattu, S., Vandana, R., Fatima, L., et al: ‘Biologically reduced silver nanoparticles from Streptomyces sp. VDP-5 and its antibacterial efficacy’, Int. J. Pharm. Pharm. Sci. Res., 2014, 4, (2), pp. 3136.
    37. 37)
      • 9. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, pp. 7683.
    38. 38)
      • 33. Ashajyothi, C., Manjunath, N.R., Chandrakanth, R.K.: ‘Antibacterial activity of biogenic zinc oxide nanoparticles synthesized from Enterococcus faecalis’, Int. J. Chem. Tech. Res., 2014, 6, (5), pp. 31313136.
    39. 39)
      • 7. Lin, Z.Y., Fu, J.K., Wu, J.M., et al: ‘Preliminary study on the mechanism of non-enzymatic bioreduction of precious metal ions’, Acta Phys. Chim. Sin., 2001, 17, pp. 477480.
    40. 40)
      • 48. Tran, Q.H., Nguyen, Y.Q., Le, A.T.: ‘Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives’, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4, 033001, pp. 120.
    41. 41)
      • 21. Saminathan, K.: ‘Biosynthesis of silver nanoparticles using soil Actinomycetes Streptomyces sp.’, Int. J. Curr. Microbiol. App. Sci., 2015, 4, (3), pp. 10731083.
    42. 42)
      • 4. Hajipour, J.M., Fromm, K.M., Ashkarran, A.A., et al: ‘Antibacterial properties of nanoparticles’, Trend Biotechnol., 2012, 30, pp. 499511.
    43. 43)
      • 23. Umoren, S.A., Obot, I.B., Gasem, Z.M.: ‘Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature’, J. Mater. Environ. Sci., 2014, 5, (3), pp. 907914.
    44. 44)
      • 35. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., et al: ‘Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli’, Colloids Surf B, 2009, 74, pp. 328335.
    45. 45)
      • 18. Tamura, K., Peterson, D., Peterson, N., et al: ‘MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods’, Mol. Biol. Evol., 2011, 28, (10), pp. 27312739.
    46. 46)
      • 20. Zonaro, E., Lampis, S., Turner, R.J., et al: ‘Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilm’, Front Microbiol., 2015, 6, pp. 111.
    47. 47)
      • 50. Sultan, A., Khan, H.M., Malik, A., et al: ‘Antibacterial activity of ZnO nanoparticles against ESBL and Amp-C producing gram negative isolates from superficial wound infections’, Int. J. Curr. Microbiol. App. Sci., 2015, e-1, pp. 3847.
    48. 48)
      • 34. Gonzalo, J., Serna, R., Sol, J., et al: ‘Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles’, J. Phys. Condens. Matter., 2003, 15, (42), pp. 30013002.
    49. 49)
      • 25. Williams, S.T., Cross, T.: ‘Isolation, purification, cultivation and preservation of actinomycetes’, Methods Microbiol., 1971, 4, pp. 295334.
    50. 50)
      • 41. Linkov, P, Artemyev, M., Efimov, A.E., et al: ‘Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials’, Nanoscale, 2013, 7, pp. 87818798.
    51. 51)
      • 43. Mandal, S., Phadtate, S., Sastry, M.: ‘Interfacing biology with nanoparticles’, Curr. Appl. Phys., 2005, 5, pp. 118127.
    52. 52)
      • 38. Prakasham, R.S., Kumar, B.S., Kumar, Y.S., et al: ‘Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11’, Indian J. Microbiol., 2014, 54, (3), pp. 329336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0213
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading