access icon free Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera

The synthesis of zinc sulphide nanoparticles (ZnS NPs) using a green approach was explored. The resulting nanoparticles (NPs) were characterised by UV–vis spectroscopy, scanning and transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The leishmanicidal, cytotoxic and antioxidant activity of the resulting synthesised ZnS NPs (<70 nm) were evaluated against Leishmania major (L. major) promastigotes and amastigotes by MTT assay and using a macrophage model. The ZnS NPs were able to counteract the effects of oxidative metabolites as demonstrated by the oxidant activity. The IC50 value of butylated hydroxyanisole was 26.04 µg/ml as compared with the IC50 for ZnS NPs (90.95 µg/ml). The NPs displayed no cytotoxicity for the murine macrophaghes as the selectivity index (SI) fell into the safety range (SI ≥ 10). These nanomaterials exhibited good antileishmanial activity against the L. major stages that were comparable to that of Glucantime, the drug of choice. The IC50 values of ZnS NPs and Glucantime against amastigotes were 11.59 ± 2.51 and 4.95 ± 2.51 μg/ml, respectively. The IC50 values for ZnS NPs and Glucantime versus promastigote were 29.81 ± 3.15 and 14.75 ± 4.05 μg/ml, respectively. Further investigation is essential to explore the biological effects of ZnS NPs on animal and/or clinical models.

Inspec keywords: microorganisms; ultraviolet spectra; nanoparticles; X-ray diffraction; antibacterial activity; zinc compounds; visible spectra; nanobiotechnology; nanofabrication; Fourier transform infrared spectra

Other keywords: leishmanicidal activity; UV–vis spectroscopy; Leishmania major amastigotes; Fourier transform infrared spectroscopy; Leishmania major promastigotes; butylated hydroxyanisole; murine macrophaghes; selectivity index; transmission electron microscopy; cytotoxicity; green approach; antioxidant activity; X-ray diffraction; biosynthesised zinc sulphide nanoparticles; macrophage model; ZnS; oxidative metabolites; Phoenix dactylifera; MTT assay; scanning electron microscopy; glucantime

Subjects: Visible and ultraviolet spectra of other nonmetals; Biomedical materials; Nanotechnology applications in biomedicine; Methods of nanofabrication and processing; Infrared and Raman spectra in inorganic crystals

References

    1. 1)
      • 27. Khatami, M., Mehnipor, R., Poor, M.H.S., et al: ‘Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties’, J. Cluster Sci., 2016, 27, (5), pp. 16011612.
    2. 2)
      • 20. Khatami, M., Mortazavi, S.M., Kishani-Farahani, Z., et al: ‘Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency’, Iran. J. Biotechnol., 2017, 15, (2), pp. 95101.
    3. 3)
      • 51. Sobhanipoor, M.H., Ahmadrajabi, R., Karmostaji, A., et al: ‘Molecular characterization of nasal methicillin resistant Staphylococcus aureus isolates from workers of an automaker company in Southeast Iran’, APMIS, 2017, 125, (10), pp. 921926.
    4. 4)
      • 13. Khorasani-Motlagh, M., Noroozifar, M., Jahani, S.: ‘Preparation and characterization of nano-sized magnetic particles lacoo3 by ultrasonic-assisted coprecipitation method’, Synth. React. Inorg. Metal-Org. Nano-Metal Chem., 2015, 45, (10), pp. 15911595.
    5. 5)
      • 7. Aflatoonian, M.R., Sharifi, I., Aflatoonian, B., et al: ‘A review of impact of Bam earthquake on cutaneous leishmaniasis and status: epidemic of old foci, emergence of new foci and changes in features of the disease’, J. Arthropod-Borne Dis., 2016, 10, (3), pp. 271280.
    6. 6)
      • 32. Singh, P., Singh, H., Castro-Aceituno, V., et al: ‘Engineering of mesoporous silica nanoparticles for release of ginsenoside Ck and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies’, J. Nanoparticle Res., 2017, 19, (7), p. 257.
    7. 7)
      • 10. Jahani, S., Khorasani-Motlagh, M., Noroozifar, M.: ‘DNA interaction of europium (III) complex containing 2,2′-bipyridine and its antimicrobial activity’, J. Biomol. Struct. Dyn., 2016, 34, (3), pp. 612624.
    8. 8)
      • 18. Darroudi, M., Sarani, M., Kazemi Oskuee, R., et al: ‘Nanoceria: gum mediated synthesis and in vitro viability assay’, Ceram. Int., 2014, 40, (2), pp. 28632868.
    9. 9)
      • 36. Sharififar, F., Dehghn-Nudeh, G., Mirtajaldini, M.: ‘Major flavonoids with antioxidant activity from Teucrium polium L’, Food Chem., 2009, 112, (4), pp. 885888.
    10. 10)
      • 40. Engelbrekt, C., Sorensen, K.H., Zhang, J., et al: ‘Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry’, J. Mater. Chem., 2009, 19, (42), pp. 78397847.
    11. 11)
      • 49. Birla, S., Tiwari, V., Gade, A., et al: ‘Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus’, Lett. Appl. Microbiol., 2009, 48, (2), pp. 173179.
    12. 12)
      • 35. Carrio, M., Cubarsi, R., Villaverde, A.: ‘Fine architecture of bacterial inclusion bodies’, FEBS Lett., 2000, 471, (1), pp. 711.
    13. 13)
      • 28. Khatami, M., Nejad, M.S., Salari, S., et al: ‘Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani’, IET Nanobiotechnology, 2016, 10, (4), pp. 237243.
    14. 14)
      • 39. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., et al: ‘Synthesis of silver nanoparticles: chemical, physical and biological methods’, Res. Pharm. Sci., 2014, 9, (6), pp. 385406.
    15. 15)
      • 23. Baghbani, F., Moztarzadeh, F., Mohandesi, J.A., et al: ‘Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets’, Int. J. Biol. Macromol., 2016, 89, pp. 550558.
    16. 16)
      • 33. Ahn, S., Singh, P., Castro-Aceituno, V., et al: ‘Gold nanoparticles synthesized using panax ginseng leaves suppress inflammatory – mediators production via blockade of Nf-Κb activation in macrophages’, Artif. Cells Nanomed. Biotechnol., 2017, 45, (2), pp. 270276.
    17. 17)
      • 46. Sattarahmady, N., Tondro, G.H., Gholchin, M., et al: ‘Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections’, Biochem. Eng. J., 2015, 97, pp. 17.
    18. 18)
      • 44. Sattarahmady, N., Heli, H., Moradi, S.E.: ‘Cobalt hexacyanoferrate/graphene nanocomposite – application for the electrocatalytic oxidation and amperometric determination of captopril’, Sens. Actuators B, Chem., 2013, 177, pp. 10981106.
    19. 19)
      • 47. Rahi, A., Sattarahmady, N., Heli, H.: ‘Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms’, Sci. Rep., 2015, 5, pp. 18060.
    20. 20)
      • 1. Aflatoonian, M.R., Sharifi, I., Poursmaelian, S., et al: ‘The emergence of anthroponotic cutaneous leishmaniasis following the earthquake in southern villages of Bam District, Southeastern Iran, 2010’, J. Arthropod-Borne Dis., 2013, 7, (1), pp. 814.
    21. 21)
      • 42. Elmer, W.H., White, J.C.: ‘The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium’, Environ. Sci., Nano, 2016, 3, (5), pp. 10721079.
    22. 22)
      • 3. Sharifi, I., Fekri, A.R., Aflatonian, M.R., et al: ‘Cutaneous leishmaniasis in primary school children in the South-Eastern Iranian city of Bam, 1994–95’, Bull. World Health Organ., 1998, 76, (3), pp. 289293.
    23. 23)
      • 30. Oh, K.H., Soshnikova, V., Markus, J., et al: ‘Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities’, Artif. Cells Nanomed. Biotechnol., 2017, 45, pp. 18.
    24. 24)
      • 17. Zare, E., Pourseyedi, S., Khatami, M., et al: ‘Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity’, J. Mol. Struct., 2017, 1146, pp. 96103.
    25. 25)
      • 29. Nejad, M.S., Bonjar, G.H.S., Khatami, M., et al: ‘In Vitro and in Vivo antifungal properties of silver nanoparticles against Rhizoctonia Solani, a common agent of rice sheath blight disease’, IET Nanobiotechnology, 2017, 11, (3), pp. 236240.
    26. 26)
      • 38. Khatami, M., Pourseyedi, S.: ‘Phoenix dactylifera (Date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity’, IET Nanobiotechnology, 2015, 9, (4), pp. 184190.
    27. 27)
      • 43. Hussain, I., Singh, N.B., Singh, A., et al: ‘Green synthesis of nanoparticles and its potential application’, Biotechnol. Lett., 2016, 38, (4), pp. 545560.
    28. 28)
      • 19. Hamedi, S., Shojaosadati, S.A., Mohammadi, A.: ‘Evaluation of the catalytic, antibacterial and anti-biofilm activities of the convolvulus arvensis extract functionalized silver nanoparticles’, J. Photochem. Photobiol. B, Biol., 2017, 167, pp. 3644.
    29. 29)
      • 37. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., et al: ‘Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens’, Bioinorg. Chem. Appl., 2014, 2014, p. 11.
    30. 30)
      • 15. Azizi, Z., Pourseyedi, S., Khatami, M., et al: ‘Stachys lavandulifolia and lathyrus sp. mediated for green synthesis of silver nanoparticles and evaluation its antifungal activity against Dothiorella sarmentorum’, J. Cluster Sci., 2016, 27, (5), pp. 16131628.
    31. 31)
      • 22. Hamedi, S., Shojaosadati, S.A., Shokrollahzadeh, S., et al: ‘Mechanism study of silver nanoparticle production using Neurospora intermedia’, IET Nanobiotechnology, 2017, 11, (2), pp. 157163.
    32. 32)
      • 26. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, (10), p. 2346.
    33. 33)
      • 52. Ahmadrajabi, R., Shakibaie, M.R., Iranmanesh, Z., et al: ‘Prevalence of Mip virulence gene and Pcr-base sequence typing of Legionella pneumophila from cooling water systems of two cities in Iran’, Virulence, 2016, 7, (5), pp. 602609.
    34. 34)
      • 8. Khatami, M., Alijani, H., Sharifi, I., et al: ‘Leishmanicidal Activity of Biogenic Fe3o4 Nanoparticles’, Scientia Pharmaceutica, 2017, 85, (4), pp. 2736.
    35. 35)
      • 48. Moradi, M., Sattarahmady, N., Rahi, A., et al: ‘A label-free, Pcr-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves’, Talanta, 2016, 161, pp. 4853.
    36. 36)
      • 50. Rai, M., Duran, N.: ‘Metal nanoparticles in microbiology’ (Springer Science & Business Media, 2011).
    37. 37)
      • 4. Sharifi, I., Aflatoonian, M.R., Fekri, A.R., et al: ‘A comprehensive review of cutaneous leishmaniasis in Kerman province, Southeastern Iran-narrative review article’, Iran. J. Public Health, 2015, 44, (3), pp. 299307.
    38. 38)
      • 11. Beitollahi, H., Tajik, S., Jahani, S.: ‘Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/Mwcnt nanocomposite’, Electroanalysis, 2016, 28, (5), pp. 10931099.
    39. 39)
      • 31. Singh, P., Kim, Y.-J., Zhang, D., et al: ‘Biological synthesis of nanoparticles from plants and microorganisms’, Trends Biotechnol., 2016, 34, (7), pp. 588599.
    40. 40)
      • 34. Singh, P., Kim, Y.J., Singh, H., et al: ‘In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies’, Int. J. Nanomed., 2017, 12, pp. 40734084.
    41. 41)
      • 5. Bamorovat, M., Sharifi, I., Dabiri, S., et al: ‘Leishmania tropica in stray dogs in southeast Iran’, Iran. J. Public Health, 2015, 44, (10), pp. 13591366.
    42. 42)
      • 25. Moghaddam, H.M., Beitollahi, H., Tajik, S., et al: ‘Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor’, Russ. J. Electrochem., 2017, 53, (5), pp. 452460.
    43. 43)
      • 45. Heli, H., Zarghan, M., Jabbari, A., et al: ‘Electrocatalytic oxidation of the antiviral drug Acyclovir on a copper nanoparticles-modified carbon paste electrode’, J. Solid State Electrochem., 2010, 14, (5), pp. 787795.
    44. 44)
      • 14. Jahani, S., Beitollahi, H.: ‘Selective detection of dopamine in the presence of uric acid using nio nanoparticles decorated on graphene nanosheets modified screen-printed electrodes’, Electroanalysis, 2016, 28, (9), pp. 20222028.
    45. 45)
      • 21. Khatami, M., Heli, H., Jahani, P.M., et al: ‘Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity’, IET Nanobiotechnology, 2017, 11, (6), pp. 709713.
    46. 46)
      • 41. Xia, B., He, F., Li, L.: ‘Preparation of bimetallic nanoparticles using a facile green synthesis method and their application’, Langmuir, 2013, 29, (15), pp. 49014907.
    47. 47)
      • 16. Jamdagni, P., Khatri, P., Rana, J.S.: ‘Green synthesis of zinc oxide nanoparticles using flower extract of nyctanthes arbor-tristis and their antifungal activity’, J. King Saud Univ. – Sci., 2017, 9, pp. 18.
    48. 48)
      • 6. Aflatoonian, M.R., Sharifi, I., Hakimi Parizi, M., et al: ‘A prospective cohort study of cutaneous leishmaniasis risk and opium addiction in Southeastern Iran’, PLoS ONE, 2014, 9, (2), p. e89043.
    49. 49)
      • 9. Jamdagni, P., Khatri, P., Rana, J.S.: ‘Nanoparticles based DNA conjugates for detection of pathogenic microorganisms’, Int. Nano Lett., 2016, 6, (3), pp. 139146.
    50. 50)
      • 2. Desjeux, P.: ‘The increase in risk factors for leishmaniasis worldwide’, Trans. R. Soc. Trop. Med. Hyg., 2001, 95, (3), pp. 239243.
    51. 51)
      • 24. Ayodhya, D., Veerabhadram, G.: ‘Green synthesis, optical, structural, photocatalytic, fluorescence quenching and degradation studies of ZnS nanoparticles’, J. Fluoresc., 2016, 26, (6), pp. 21652175.
    52. 52)
      • 12. Niroomand, S., Khorasani-Motlagh, M., Noroozifar, M., et al: ‘Photochemical and Dft studies on DNA-binding ability and antibacterial activity of lanthanum (III)-phenanthroline complex’, J. Mol. Struct., 2017, 1130, pp. 940950.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0204
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading