access icon free Probing the in vitro binding mechanism between human serum albumin and La2O2CO3 nanoparticles

The interaction of La2O2CO3 nanoparticles (La NPs) with human serum albumin (HSA) has been studied. Analysis of the fluorescence quenching data of HSA using Stern–Volmer method showed that La NPs quenched HSA fluorescence in static quenching mode. Thermodynamic analysis indicated that hydrogen bonds and Van der Waals interactions play a major role for HSA–La NPs associations. Fluorescent displacement measurements confirmed that the primary binding site of La NPs was mainly located within site I (subdomain IIA) of HSA. The binding distance was calculated by using Forster resonance energy transfer theory. Also, the results of Fourier-transform infrared spectroscopy, circular dichroism, three-dimensional fluorescence and UV–visible measurements indicated that the binding of above La NPs to HSA may induce conformational and micro-environmental changes of protein. This study suggested that the conformational change of HSA was at secondary structure of it and the biological activity of this protein was changed in the present of La NPs.

Inspec keywords: hydrogen bonds; molecular configurations; Fourier transform infrared spectra; fluorescence; biothermics; lanthanum compounds; visible spectra; nanoparticles; ultraviolet spectra; van der Waals forces; molecular biophysics; thermal analysis; proteins; nanobiotechnology; radiation quenching; biochemistry; circular dichroism

Other keywords: La2O2CO3 nanoparticles; secondary structure; in vitro binding mechanism; static quenching mode; fluorescent displacement measurements; La2O2CO3; three-dimensional fluorescence; Fourier-transform infrared spectroscopy; protein; circular dichroism; human serum albumin; thermodynamic analysis; UV-visible measurements; Forster resonance energy transfer theory; La NPs quenched HSA fluorescence; Stern-Volmer method; microenvironmental changes; binding distance; Van der Waals interactions; conformational changes; hydrogen bonds; primary binding site; HSA-La NPs associations; subdomain IIA

Subjects: Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Electronic structure and spectra of macromolecules; Interactions with radiations at the biomolecular level; Molecular bond strengths, dissociation energies, hydrogen bonding; Physical chemistry of biomolecular solutions and condensed states; Molecular fluorescence and phosphorescence spectra; Ultraviolet molecular spectra; Intramolecular energy transfer; intramolecular dynamics; dynamics of van der Waals molecules; Biothermics; Biomolecular interactions, charge transfer complexes; Crystal binding; Optical activity, optical rotation, circular dichroism in molecules; Biomolecular structure, configuration, conformation, and active sites; Other methods of nanofabrication; Infrared molecular spectra; Magneto-optical and electro-optical effects in atoms; birefringence, dichroism and optical activity; Visible molecular spectra; Macromolecular configuration (bonds, dimensions)

References

    1. 1)
      • 25. Samari, F., Hemmateenejad, B., Shamsipur, M., et al: ‘Affinity of two novel five-coordinated anticancer Pt (II) complexes to human and bovine serum albumins: a spectroscopic approach’, Inorg. Chem., 2012, 51, (6), pp. 34543464.
    2. 2)
      • 15. Lakowicz, J.R.: Quenching of Fluorescence, in: ‘Principles of fluorescence spectroscopy’ (Springer, Boston, MA, 1983).
    3. 3)
      • 9. Hemmateenejad, B., Yousefinejad, S.: ‘Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry’, J. Mol. Struct., 2013, 1037, pp. 317322.
    4. 4)
      • 31. Cui, F., Yan, Y., Zhang, Q., et al: ‘Characterization of the interaction between 8-bromoadenosine with human serum albumin and its analytical application’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2009, 74, (4), pp. 964971.
    5. 5)
      • 13. Shahraki, S., Shiri, F., Saeidifar, M.: ‘Evaluation of in silico ADMET analysis and human serum albumin interactions of a new lanthanum (III) complex by spectroscopic and molecular modeling studies’, Inorg. Chim. Acta, 2017, 463, pp. 8087.
    6. 6)
      • 33. Zhang, G., Wang, L., Pan, J.: ‘Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques’, J. Agric. Food Chem., 2012, 60, (10), pp. 27212729.
    7. 7)
      • 42. Shahraki, S., Saeidifar, M., Shiri, F., et al: ‘Assessment of the interaction procedure between Pt (IV) prodrug [Pt (5, 5′-dmbpy)Cl4 and human serum albumin: combination of spectroscopic and molecular modeling technique’, J. Biomol. Struc. Dyn., 2016, 35, pp. 30983106.
    8. 8)
      • 12. Shahraki, S., Saeidifar, M., Shiri, F., et al: ‘Synthesis, characterization, cytotoxicity and detailed HSA interaction of New zinc (II) complexes containing dithiocarbamate and heterocyclic N-donor ligands’, Polycyclic Aromatic Compd., 2017, pp. 118, doi: 10.1080/10406638.2017.1302972.
    9. 9)
      • 4. D'Haese, P.C., Spasovski, G.B., Sikole, A., et al: ‘A multicenter study on the effects of lanthanum carbonate (Fosrenol™) and calcium carbonate on renal bone disease in dialysis patients’, Kidney Int., 2003, 63, pp. S73S78.
    10. 10)
      • 37. Ding, F., Li, N., Han, B., et al: ‘The binding of CI acid Red 2 to human serum albumin: determination of binding mechanism and binding site using fluorescence spectroscopy’, Dyes Pigments, 2009, 83, (2), pp. 249257.
    11. 11)
      • 8. Sen, T., Mandal, S., Haldar, S., et al: ‘Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer’, J. Phys. Chem. C, 2011, 115, (49), pp. 2403724044.
    12. 12)
      • 34. Thipperudrappa, J., Biradar, D., Hanagodimath, S.: ‘Simultaneous presence of static and dynamic component in the fluorescence quenching of bis-MSB by CCl4 and aniline’, J. Lumin., 2007, 124, (1), pp. 4550.
    13. 13)
      • 40. Huang, S., Qiu, H., Xie, J., et al: ‘Systematical investigation of in vitro molecular interaction between fluorescent carbon dots and human serum albumin’, RSC Adv., 2016, 6, (50), pp. 4453144542.
    14. 14)
      • 18. Tang, B., Huang, Y., Ma, X., et al: ‘Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: effects of esteryl position on affinity’, Food Chem., 2016, 212, pp. 434442.
    15. 15)
      • 10. Carter, D.C., Ho, J.X.: ‘Structure of serum albumin’, Adv. Protein Chem., 1994, 45, pp. 153203.
    16. 16)
      • 43. Fotouhi, L., Yousefinejad, S., Salehi, N., et al: ‘Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2015, 136, pp. 19741981.
    17. 17)
      • 23. Hu, Y.-J., Liu, Y., Jiang, W., et al: ‘Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine’, J. Photochem. Photobiol. B, Biol., 2005, 80, (3), pp. 235242.
    18. 18)
      • 19. Kandagal, P., Ashoka, S., Seetharamappa, J., et al: ‘Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach’, J. Pharm. Biomed. Anal., 2006, 41, (2), pp. 393399.
    19. 19)
      • 1. Murthy, S.K.: ‘Nanoparticles in modern medicine: state of the art and future challenges’, Int. J. Nanomed., 2007, 2, (2), p. 129.
    20. 20)
      • 21. Tian, J., Liu, J., Tian, X., et al: ‘Study of the interaction of kaempferol with bovine serum albumin’, J. Mol. Struct., 2004, 691, (1), pp. 197202.
    21. 21)
      • 38. Lucas, L.H., Ersoy, B.A., Kueltzo, L.A., et al: ‘Probing protein structure and dynamics by second-derivative ultraviolet absorption analysis of cation–π interactions’, Protein Sci., 2006, 15, (10), pp. 22282243.
    22. 22)
      • 41. Wang, Q., Sun, Q., Ma, X., et al: ‘Probing the binding interaction of human serum albumin with three bioactive constituents of Eriobotrta japonica leaves: spectroscopic and molecular modeling approaches’, J. Photochem. Photobiol. B, Biol., 2015, 148, pp. 268276.
    23. 23)
      • 32. Wu, C., Scott, J., Shea, J.-E.: ‘Binding of Congo red to amyloid protofibrils of the alzheimer aβ 9–40 peptide probed by molecular dynamics simulations’, Biophys. J., 2012, 103, (3), pp. 550557.
    24. 24)
      • 14. Essemine, J., Hasni, I., Carpentier, R., et al: ‘Binding of biogenic and synthetic polyamines to β-lactoglobulin’, Int. J. Biol. Macromol., 2011, 49, (2), pp. 201209.
    25. 25)
      • 29. Sheng, J., Zhang, S., Lv, S., et al: ‘Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures’, J. Mater. Sci., 2007, 42, (23), pp. 95659571.
    26. 26)
      • 35. Rasoulzadeh, F., Jabary, H.N., Naseri, A., et al: ‘Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2009, 72, (1), pp. 190193.
    27. 27)
      • 30. Ghiasi, M., Malekzadeh, A.: ‘Synthesis of CaCO3 nanoparticles via citrate method and sequential preparation of CaO and Ca(OH)2 nanoparticles’, Cryst. Res. Technol., 2012, 47, (4), pp. 471478.
    28. 28)
      • 39. Trynda-Lemiesz, L., Karaczyn, A., Keppler, B.K., et al: ‘Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate (III)’, J. Inorg. Biochem., 2000, 78, (4), pp. 341346.
    29. 29)
      • 27. Salavati-Niasari, M., Hosseinzadeh, G., Davar, F.: ‘Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method’, J. Alloys Compd., 2011, 509, (10), pp. 40984103.
    30. 30)
      • 20. Sahoo, H.: ‘Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications’, J. Photochem. Photobiol. C, Photochem. Rev., 2011, 12, (1), pp. 2030.
    31. 31)
      • 2. Chibber, S., Ahmad, I.: ‘Molecular docking, a tool to determine interaction of CuO and TiO2 nanoparticles with human serum albumin’, Biochem. Biophys. Rep., 2016, 6, pp. 6367.
    32. 32)
      • 26. Lu, Z., Cui, T., Shi, Q.: ‘Applications of circular dichroism and optical rotatory dispersion in molecular biology’ (Science, Beijing, 1987), pp. 7982.
    33. 33)
      • 5. Masui, T., Yamamoto, M., Sakata, T., et al: Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J. Mater. Chem., 2000, 10, (2), pp. 353357.
    34. 34)
      • 17. Tian, J., Liu, J., Hu, Z., et al: ‘Interaction of wogonin with bovine serum albumin’, Bioorg. Med. Chem., 2005, 13, (12), pp. 41244129.
    35. 35)
      • 6. Hein, K.L., Kragh-Hansen, U., Morth, J.P., et al: ‘Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin’, J. Struct. Biol., 2010, 171, (3), pp. 353360.
    36. 36)
      • 11. Shahraki, S., Shiri, F., Majd, M.H., et al: ‘Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co (dipic) 2 Ni (OH2)5]. 2H2O (dipic = dipicolinate) with two carrier proteins’, J. Pharm. Biomed. Anal., 2017, 145, pp. 273282.
    37. 37)
      • 36. Farooqi, M.J., Penick, M.A., Negrete, G.R., et al: ‘Interaction of human serum albumin with novel 3, 9-disubstituted perylenes’, Protein J., 2013, 32, (6), pp. 493504.
    38. 38)
      • 7. Sekar, G., Kumar, N.P., Mukherjee, A., et al: ‘Cerium oxide nanoparticles promote HSA fibrillation in vitro’, Int. J. Biol. Macromol., 2017, 103, pp. 11381145.
    39. 39)
      • 28. Song, L., Du, P., Xiong, J., et al: ‘Preparation and luminescence properties of terbium-doped lanthanum oxide nanofibers by electrospinning’, J. Lumin., 2012, 132, (1), pp. 171174.
    40. 40)
      • 22. Wang, F., Huang, W., Dai, Z.: ‘Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin’, J. Mol. Struct., 2008, 875, (1), pp. 509514.
    41. 41)
      • 16. Eftink, M.R., Ghiron, C.A.: ‘Fluorescence quenching studies with proteins’, Anal. Biochem., 1981, 114, (2), pp. 199227.
    42. 42)
      • 24. Lakowicz, J.R.: ‘Radiative decay engineering: biophysical and biomedical applications’, Anal. Biochem., 2001, 298, (1), pp. 124.
    43. 43)
      • 3. Parak, W.J., Boudreau, R., Le Gros, M., et al: ‘Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks’, Adv. Mater., 2002, 14, (12), pp. 882885.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0190
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0190
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading