Synthesis of extracellular gold nanoparticles using Cupriavidus metallidurans CH34 cells

Synthesis of extracellular gold nanoparticles using Cupriavidus metallidurans CH34 cells

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, spontaneous synthesis of a gold (Au) colloid using cells of Cupriavidus metallidurans CH34 is reported, and compared with results obtained using cells of the model bacterium Escherichia coli MG1655. To investigate the synthesis mechanism, bacterial biomass and secretomes from both strains were incubated with Au(III) ions. Only CH34 cells were capable of producing extracellular dispersions of Au nanoparticles (NPs). Transmission electron microscopy images showed that AuNPs morphology was dominated by triangular and decahedral nanostructures. Energy dispersive X-ray spectroscopy and Fourier transform infrared spectra showed the presence of sulphur and vibrations associated to proteins. Average AuNPs diameter was obtained by dynamic light-scattering measurements (DLS), NP tracking analysis measurements and analysis of electron microscopy images. Moreover, DLS measurements showed that the biogenic colloid was stable after exposure to ultrasound, high ionic strength and extreme pH conditions. The biogenic AuNPs produced by strain CH34 did not show antibacterial activity, in contrast to biogenic silver NPs. Comparative bioinformatic analysis of genomes from strain CH34 and strain MG1655 showed potential CH34 proteins that may be electron donors during reduction of Au(III) ions. On the basis of these results, a mechanism for the extracellular Au reduction by strain CH34 is proposed.

Inspec keywords: biomedical materials; molecular biophysics; nanofabrication; nanoparticles; gold; nanomedicine; light scattering; X-ray chemical analysis; pH; antibacterial activity; biochemistry; transmission electron microscopy; cellular biophysics; genomics; colloids; proteins; Fourier transform infrared spectra; X-ray diffraction

Other keywords: Fourier transform infrared spectra; face-centred cubic phase; biogenic colloid; DLS measurements; Cupriavidus metallidurans CH34 cells; decahedral nanostructures; Au; high ionic strength; proteins; NP tracking analysis; electron microscopy images; extracellular dispersions; energy dispersive X-ray spectroscopy; pH conditions; gold colloid; transmission electron microscopy; Au(III) ions; triangular nanostructures; bioinformatic analysis; extracellular gold nanoparticles; genomes; powder X-ray diffraction; AuNP morphology; bacterial biomass; dynamic light-scattering measurements; bacterial secretomes

Subjects: Biomedical materials; Low-dimensional structures: growth, structure and nonelectronic properties; Physical chemistry of biomolecular solutions and condensed states; Colloids; Optical properties of metals and metallic alloys (thin films/low-dimensional structures); Physics of subcellular structures; Interactions with radiations at the biomolecular level; Cellular biophysics; Biomolecular structure, configuration, conformation, and active sites; Infrared and Raman spectra in metals; Nanotechnology applications in biomedicine; Brillouin and Rayleigh scattering; other light scattering (condensed matter); Electromagnetic radiation spectrometry (chemical analysis)


    1. 1)
      • 1. Monchy, S., Benotmane, M.A., Janssen, P., et al: ‘Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals’, J. Bacteriol., 2007, 189, pp. 74177425.
    2. 2)
      • 2. Rojas, L.A., Yáñez, C., González, M., et al: ‘Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation’, PLoS One, 2011, 6, p. e17555.
    3. 3)
      • 3. Altimira, F., Yáñez, C., Bravo, G., et al: ‘Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile’, BMC Microbiol., 2012, 12, p. 193.
    4. 4)
      • 4. Chirino, B., Strahsburger, E., Agulló, L., et al: ‘Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400’, PLoS One, 2013, 8, p. e75746.
    5. 5)
      • 5. Ramanathan, R., Field, M.R., O'Mullane, A.P., et al: ‘Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems’, Nanoscale, 2013, 5, pp. 23002306.
    6. 6)
      • 6. Okamoto, A., Kalathil, S., Deng, X., et al: ‘Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH’, Sci. Rep., 2014, 4, p. 5628.
    7. 7)
      • 7. Fuentes, S., Méndez, V., Aguila, P., et al: ‘Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications’, Appl. Microbiol. Biotechnol., 2014, 98, pp. 47814794.
    8. 8)
      • 8. Fuentes, S., Barra, B., Caporaso, J.G., et al: ‘From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation’, Appl. Environ. Microbiol., 2016, 82, pp. 888896.
    9. 9)
      • 9. Durán, N., Marcato, P.D., Durán, M., et al: ‘Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants’, Appl. Microbiol. Biotechnol., 2011, 90, pp. 16091624.
    10. 10)
      • 10. Rai, M., Birla, S., Ingle, A.P., et al: ‘Nanosilver: an inorganic nanoparticle with myriad potential applications’, Nanotechnol. Rev., 2014, 3, pp. 281309.
    11. 11)
      • 11. Kashefi, K., Tor, J.M., Nevin, K.P., et al: ‘Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea’, Appl. Environ. Microbiol., 2001, 67, pp. 32753279.
    12. 12)
      • 12. Karthikeyan, S., Beveridge, T.J.: ‘Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold’, Environ. Microbiol., 2002, 4, pp. 667675.
    13. 13)
      • 13. Durán, N., Marcato, P.D., Alves, O.L., et al: ‘Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains’, J. Nanobiotechnol., 2005, 3, p. 8.
    14. 14)
      • 14. Thakkar, K.N., Mhatre, S.S., Parikh, R.Y.: ‘Biological synthesis of metallic nanoparticles’, Nanomedicine, 2010, 6, pp. 257262.
    15. 15)
      • 15. Derakhshan, F.K., Dehnad, A., Salouti, M.: ‘Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus’, Synth. React. Inorg. Met. Org. Chem., 2012, 42, pp. 868871.
    16. 16)
      • 16. Nies, D.H.: ‘Efflux-mediated heavy metal resistance in prokaryotes’, FEMS Microbiol. Rev., 2003, 27, pp. 313339.
    17. 17)
      • 17. Taghavi, S., Lesaulnier, C., Monchy, S., et al: ‘Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions’, Antonie Van Leeuwenhoek, 2009, 96, pp. 171182.
    18. 18)
      • 18. Reith, F., Etschmann, B., Grosse, C., et al: ‘Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans’, Proc. Natl. Acad. Sci., 2009, 106, pp. 1775717762.
    19. 19)
      • 19. Reith, F., Rogers, S.L., McPhail, D.C., et al: ‘Biomineralization of gold: biofilms on bacterioform gold’, Science, 2006, 313, pp. 233236.
    20. 20)
      • 20. Fairbrother, L., Etschmann, B., Brugger, J., et al: ‘Biomineralization of gold in biofilms of Cupriavidus metallidurans’, Environ. Sci. Technol., 2013, 47, pp. 26282635.
    21. 21)
      • 21. Mergeay, M., Nies, D., Schlegel, H.G., et al: ‘Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals’, J. Bacteriol., 1985, 162, pp. 328334.
    22. 22)
      • 22. Baba, T., Ara, T., Hasegawa, M., et al: ‘Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection’, Mol. Syst. Biol., 2006, 2, p. 2006.0008.
    23. 23)
      • 23. Parra, C., Montero-Silva, F., Henríquez, R., et al: ‘Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 64306437.
    24. 24)
      • 24. Song, C., Kumar, A., Saleh, M.: ‘Bioinformatic comparison of bacterial secretomes’, Genomics Proteomics Bioinform., 2009, 7, pp. 3746.
    25. 25)
      • 25. Wiegand, I., Hilpert, K., Hancock, R.E.W.: ‘Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances’, Nat. Protoc., 2008, 3, pp. 163175.
    26. 26)
      • 26. Grdadolnik, J., Maréchal, Y.: ‘Bovine serum albumin observed by infrared spectrometry. I. Methodology, structural investigation, and water uptake’, Biopolymers, 2001, 62, pp. 4053.
    27. 27)
      • 27. Tsai, D.-H., Delrio, F.W., Keene, A.M., et al: ‘Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods’, Langmuir, 2011, 27, pp. 24642477.
    28. 28)
      • 28. Shi, X., Li, D., Xie, J., et al: ‘Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin’, Chin. Sci. Bull., 2012, 57, pp. 11091115.
    29. 29)
      • 29. Marcato, P.D., Durán, M., Huber, S.C., et al: ‘Biogenic silver nanoparticles and its antifungal activity as a new topical transungual drug’, J. Nano Res., 2012, 20, pp. 99107.
    30. 30)
      • 30. Huang, J., Zhan, G., Zheng, B., et al: ‘Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity’, Ind. Eng. Chem. Res., 2011, 50, pp. 90959106.
    31. 31)
      • 31. Du, L., Jiang, H., Liu, X., et al: ‘Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin’, Electrochem. Commun., 2007, 9, pp. 11651170.
    32. 32)
      • 32. Srivastava, S.K., Yamada, R., Ogino, Ch., et al: ‘Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol’, Nanoscale Res. Lett., 2013, 8, p. 70.
    33. 33)
      • 33. Monchy, S., Benotmane, M.F., Wattiez, R., et al: ‘Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34’, Microbiology, 2006, 152, pp. 17651776.
    34. 34)
      • 34. Isab, A., Sadler, P.: ‘Reactions of gold(III) ions with ribonuclease A and methionine derivatives in aqueous solution’, Biochim. Biophys. Acta, 1977, 492, pp. 322330.
    35. 35)
      • 35. Glišić, B.Đ., Rychlewska, U., Djuran, M.I.: ‘Reactions and structural characterization of gold(III) complexes with amino acids, peptides and proteins’, Dalton Trans., 2012, 41, pp. 68876901.
    36. 36)
      • 36. Glišić, B.D., Rajkovic, S., Stanic, Z.D., et al: ‘A spectroscopic and electrochemical investigation of the oxidation pathway of glycyl-D,L-methionine and its N-acetyl derivative induced by gold(III)’, Gold Bull., 2011, 44, pp. 9198.
    37. 37)
      • 37. Shaw, C.F.III, Cancro, M.P., Witkiewicz, P.L.: ‘Gold (III) oxidation of disulfides in aqueous solution’, Inorg. Chem., 1980, 19, pp. 31983201.
    38. 38)
      • 38. Witkiewicz, P.L., Shaw, C.F.: ‘Oxidative cleavage of peptide and protein disulphide bonds by gold(III): a mechanism for gold toxicity’, J. Chem. Soc. Chem. Commun., 1981, pp. 11111114.
    39. 39)
      • 39. Johnson, C.L., Snoeck, E., Ezcurdia, M., et al: ‘Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles’, Nat. Mater., 2008, 7, pp. 120124.
    40. 40)
      • 40. Sun, J., Guan, M., Shang, T., et al: ‘Synthesis and optical properties of triangular gold nanoplates with controllable edge length’, Sci. China Chem., 2010, 53, pp. 20332038.
    41. 41)
      • 41. Walsh, M.J., Yoshida, K., Kuwabara, A., et al: ‘On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles’, Nano Lett., 2012, 12, pp. 20272031.
    42. 42)
      • 42. Mukherjee, P., Roy, M., Mandal, B.P., et al: ‘Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: evolution of morphology from nano-spheres to triangular nanoprisms’, J. Colloid Interface Sci., 2012, 367, pp. 148152.
    43. 43)
      • 43. Filipe, V., Hawe, A., Jiskoot, W.: ‘Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates’, Pharm. Res., 2010, 27, pp. 796810.
    44. 44)
      • 44. Doane, T., Burda, C.: ‘Nanoparticle mediated non-covalent drug delivery’, Adv. Drug Deliv. Rev., 2012, 65, pp. 607621.
    45. 45)
      • 45. Fu, C., Yang, H., Wang, M., et al: ‘Serum albumin adsorbed on Au nanoparticles: structural changes over time induced by S–Au interaction’, Chem. Commun., 2015, 51, pp. 36343636.
    46. 46)
      • 46. Brar, S.K., Verma, M.: ‘Measurement of nanoparticles by light-scattering techniques’, Trends Anal. Chem., 2011, 30, pp. 417.
    47. 47)
      • 47. Radziuk, D., Grigoriev, D., Zhang, W., et al: ‘Ultrasound-assisted fusion of preformed gold nanoparticles’, J. Phys. Chem. C, 2010, 114, pp. 18351843.
    48. 48)
      • 48. El Badawy, A.M., Luxton, T.P., Silva, R.G., et al: ‘Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions’, Environ. Sci. Technol., 2010, 44, pp. 12601266.

Related content

This is a required field
Please enter a valid email address