access icon free Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of miR-155

MiR-155 plays a critical role in the formation of cancers and other diseases. In this study, the authors aimed to design and fabricate a biosensor based on cross-linking gold nanoparticles (AuNPs) aggregation for the detection and quantification of miR-155. Also, they intended to compare this method with SYBR Green real-time polymerase chain reaction (PCR). Primers for real-time PCR, and two thiolated capture probes for biosensor, complementary with miR-155, were designed. Citrate capped AuNPs (18.7 ± 3.6 nm) were synthesised and thiolated capture probes immobilised to AuNPs. The various concentrations of synthetic miR-155 were measured by this biosensor and real-time PCR method. Colorimetric changes were studied, and the calibration curves were plotted. Results showed the detection limit of 10 nM for the fabricated biosensor and real-time PCR. Also, eye detection using colour showed the weaker detection limit (1 µM), for this biosensor. MiR-133b as the non-complementary target could not cause a change in both colour and UV–visible spectrum. The increase in hydrodynamic diameter and negative zeta potential of AuNPs after the addition of probes verified the biosensor accurately fabricated. This fabricated biosensor could detect miR-155 simpler and faster than previous methods.

Inspec keywords: aggregation; ultraviolet spectra; surface plasmon resonance; nanoparticles; RNA; hydrodynamics; electrokinetic effects; biochemistry; cancer; enzymes; molecular biophysics; nanosensors; nanofabrication; molecular configurations; calibration; biosensors; gold; visible spectra; eye

Other keywords: colorimetric changes; diseases; colour; miR-155 detection; thiolated capture probes; cancers; SYBR green real-time polymerase chain reaction; noncomplementary target; biosensor; miR-155 quantification; citrate capped AuNPs; negative zeta potential; Au; localised surface plasmon resonance; quantitative detection; cross-linking gold nanoparticles aggregation method; synthetic miR-155; eye detection; UV-visible spectrum; detection limit; calibration curves; real-time PCR method; MiR-133b; hydrodynamic diameter

Subjects: Ultraviolet molecular spectra; Micromechanical and nanomechanical devices and systems; Interactions with radiations at the biomolecular level; Measurement standards and calibration; Biomolecular structure, configuration, conformation, and active sites; Electrochemistry and electrophoresis; Sensing and detecting devices; Visible molecular spectra; Other methods of nanofabrication; Microsensors and nanosensors; Biosensors; Physical chemistry of biomolecular solutions and condensed states; Measurement standards and calibration; Fabrication of MEMS and NEMS devices; Biomolecular interactions, charge transfer complexes; Biosensors; Electronic structure and spectra of macromolecules; Macromolecular configuration (bonds, dimensions)

References

    1. 1)
      • 25. Busk, P.K.: ‘A tool for design of primers for microRNA-specific quantitative RT-qPCR’, BMC bioinformatics, 2014, 15, (1), p. 29.
    2. 2)
      • 29. Liu, P., Yang, X., Sun, S., et al: ‘Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification’, Anal. Chem, 2013, 85, (16), pp. 76897695.
    3. 3)
      • 34. Baptista, P.V., Doria, G., Conde, J.: ‘Alloy metal nanoparticles for multicolor cancer diagnostics’, SPIE BiOS, 2011, 7909, pp. 79090K179090K10.
    4. 4)
      • 27. Muangchuen, A., Chaumpluk, P., Suriyasomboon, A., et al: ‘Colorimetric detection of ehrlichia canis via nucleic acid hybridization in gold nano-colloids’, Sensors, 2014, 14, (8), pp. 1447214487.
    5. 5)
      • 31. Varkonyi-Gasic, E., Wu, R., Wood, M., et al: ‘Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs’, Plant Methods, 2007, 3, (1), p. 12.
    6. 6)
      • 22. Kimling, J., Maier, M., Okenve, B., et al: ‘Turkevich method for gold nanoparticle synthesis revisited’, J. Phys. Chem. B, 2006, 110, (32), pp. 1570015707.
    7. 7)
      • 6. Han, Z.-B., Zhong, L., Teng, M.-J., et al: ‘Identification of recurrence-related microRNAs in hepatocellular carcinoma following liver transplantation’, Mol. Oncol, 2012, 6, (4), pp. 445457.
    8. 8)
      • 23. Cordray, M.S., Amdahl, M., Richards-Kortum, R.R.: ‘Gold nanoparticle aggregation for quantification of oligonucleotides: optimization and increased dynamic range’, Anal. Biochem, 2012, 431, (2), pp. 99105.
    9. 9)
      • 37. Sato, K., Hosokawa, K., Maeda, M.: ‘Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization’, J. Am. Chem. Soc, 2003, 125, (27), pp. 81028103.
    10. 10)
      • 5. Van Huyen, J.P.D., Tible, M., Gay, A., et al: ‘MicroRNAs as non-invasive biomarkers of heart transplant rejection’, Eur. Heart. J, 2014, 35, (45), pp. 31943202.
    11. 11)
      • 13. Anker, J.N., Hall, W.P., Lyandres, O., et al: ‘Biosensing with plasmonic nanosensors’, Nat. Mater, 2008, 7, (6), pp. 442453.
    12. 12)
      • 26. Haiss, W., Thanh, N.T., Aveyard, J., et al: ‘Determination of size and concentration of gold nanoparticles from UV − Vis spectra’, Anal. Chem, 2007, 79, (11), pp. 42154221.
    13. 13)
      • 41. Elbehery, A.H., Azzazy, H.M.: ‘Nanoparticle-based detection of cancer-associated RNA’, Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol, 2014, 6, (4), pp. 384397.
    14. 14)
      • 8. Chen, Y., Gelfond, J.A., McManus, L.M., et al: ‘Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis’, BMC genomics, 2009, 10, (1), p. 407.
    15. 15)
      • 4. Wang, K., Zhang, S., Marzolf, B., et al: ‘Circulating microRNAs, potential biomarkers for drug-induced liver injury’, Proc. Natl. Acad. Sci. USA, 2009, 106, (11), pp. 44024407.
    16. 16)
      • 28. Cai, M., Li, F., Zhang, Y., et al: ‘One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection’, Nano. Res, 2010, 3, (8), pp. 557563.
    17. 17)
      • 18. Xia, F., Zuo, X., Yang, R., et al: ‘Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes’, Proc. Natl. Acad. Sci. USA, 2010, 107, (24), pp. 1083710841.
    18. 18)
      • 32. Andreasen, D., Fog, J.U., Biggs, W., et al: ‘Improved microRNA quantification in total RNA from clinical samples’, Methods, 2010, 50, (4), pp. S6S9.
    19. 19)
      • 14. Chan, G.H., Zhao, J., Hicks, E.M., et al: ‘Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography’, Nano. Lett, 2007, 7, (7), pp. 19471952.
    20. 20)
      • 3. Guay, C., Regazzi, R.: ‘Circulating microRNAs as novel biomarkers for diabetes mellitus’, Nat. Rev. Endocrinol, 2013, 9, (9), pp. 513521.
    21. 21)
      • 12. Mayer, K.M., Hafner, J.H.: ‘Localized surface plasmon resonance sensors’, Chem. Rev, 2011, 111, (6), pp. 38283857.
    22. 22)
      • 19. Lee, J.S., Han, M.S., Mirkin, C.A.: ‘Colorimetric detection of mercuric ion (Hg2 + ) in aqueous media using DNA-functionalized gold nanoparticles’, Angew. Chem. Int. Ed, 2007, 46, (22), pp. 40934096.
    23. 23)
      • 15. Chan, G.H., Zhao, J., Schatz, G.C., et al: ‘Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles’, J. Phys. Chem. A, 2008, 112, (36), p. 13958.
    24. 24)
      • 11. Howes, P.D., Chandrawati, R., Stevens, M.M.: ‘Colloidal nanoparticles as advanced biological sensors’, Science, 2014, 346, (6205), p. 1247390.
    25. 25)
      • 9. Tian, T., Wang, J., Zhou, X.: ‘A review: microRNA detection methods’, Org. Biomol. Chem, 2015, 13, (8), pp. 22262238.
    26. 26)
      • 38. Fan, Y., Chen, X., Trigg, A.D., et al: ‘Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps’, J. Am. Chem. Soc, 2007, 129, (17), pp. 54375443.
    27. 27)
      • 1. Esteller, M.: ‘Non-coding RNAs in human disease’, Nat. Rev. Genet., 2011, 12, (12), pp. 861874.
    28. 28)
      • 33. Balcells, I., Cirera, S., Busk, P.K.: ‘Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers’, BMC biotechnology, 2011, 11, (1), p. 70.
    29. 29)
      • 36. Dai, Q., Liu, X., Coutts, J., et al: ‘A one-step highly sensitive method for DNA detection using dynamic light scattering’, J. Am. Chem. Soc, 2008, 130, (26), pp. 81388139.
    30. 30)
      • 2. Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al: ‘Circulating microRNAs as stable blood-based markers for cancer detection’, Proc. Natl. Acad. Sci. USA, 2008, 105, (30), pp. 1051310518.
    31. 31)
      • 7. Kasinski, A.L., Slack, F.J.: ‘MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy’, Nat. Rev. Cancer, 2011, 11, (12), pp. 849864.
    32. 32)
      • 40. Alhasan, A.H., Kim, D.Y., Daniel, W.L., et al: ‘Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid–gold nanoparticle conjugates’, Anal. Chem, 2012, 84, (9), pp. 41534160.
    33. 33)
      • 17. Xu, X., Daniel, W.L., Wei, W., et al: ‘Colorimetric Cu2 + detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry’, Small, 2010, 6, (5), pp. 623626.
    34. 34)
      • 20. Tili, E., Michaille, J.-J., Wernicke, D., et al: ‘Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer’, Proc. Natl. Acad. Sci. USA, 2011, 108, (12), pp. 49084913.
    35. 35)
      • 39. Li, J., Schachermeyer, S., Wang, Y., et al: ‘Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals’, Anal. Chem, 2009, 81, (23), pp. 97239729.
    36. 36)
      • 16. Li, N., Zhao, P., Astruc, D.: ‘Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity’, Angew. Chem. Int. Ed, 2014, 53, (7), pp. 17561789.
    37. 37)
      • 10. Sepúlveda, B., Angelomé, P.C., Lechuga, L.M., et al: ‘LSPR-based nanobiosensors’, Nano Today, 2009, 4, (3), pp. 244251.
    38. 38)
      • 35. Zimbone, M., Baeri, P., Calcagno, L., et al: ‘Dynamic light scattering on bioconjugated laser generated gold nanoparticles’, PloS One, 2014, 9, (3), p. e89048.
    39. 39)
      • 24. Shi, R., Sun, Y.-H., Zhang, X.-H., et al: ‘Poly (T) adaptor RT-PCR’. Next-Generation MicroRNA Expression Profiling Technology: Methods and Protocols, 2012, pp. 5366.
    40. 40)
      • 21. Emami, T., Madani, R., Golchinfar, F, et al: ‘Comparison of gold nanoparticle conjugated secondary antibody with non-gold secondary antibody in an ELISA Kit model’, Monoclon. Antib. Immunodiagn. Immunother, 2015, 34, (5), pp. 366370.
    41. 41)
      • 30. Schmittgen, T.D., Lee, E.J., Jiang, J., et al: ‘Real-time PCR quantification of precursor and mature microRNA’, Methods, 2008, 44, (1), pp. 3138.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0174
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0174
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading