http://iet.metastore.ingenta.com
1887

Extracellular synthesis of silver nanoparticles using four fungal species isolated from lichens

Extracellular synthesis of silver nanoparticles using four fungal species isolated from lichens

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Extracellular biosynthesis of silver nanoparticles using five fungal species including Fusarium oxysporum and four others isolated from native lichens (Kerman, Iran) was investigated in this study. These fungal species were identified as Arctoparmelia incurva, Penicillium chrysogenum, Uncultured root-associated fungus, and Caloplaca arnoldii by using ITS rRNA sequence analysis. These species were then cultivated in four common industrial wastes, namely a combination of yeast and malt extract, sugar beet molasses, whey, and wastewater of beverage industry, prior to their use for biosynthesis. The synthesis of the nanoparticles was monitored by UV–visible spectroscopy. It was found to be significantly affected by both fungal species and their cultivation media. C. arnoldii cultivated in the yeast and malt extract resulted in the best performance regarding reaction kinetics, particle mean diameter and size distribution. The mean diameter and variance of the nanoparticles were determined to be about 11 nm and 24 by using transmission electron microscopy and powder X-ray diffraction techniques, respectively. The zeta potential of the nanoparticles was measured to be −21.5 mV confirming their long-term stability. These findings suggest a new biosynthetic route towards eco-friendly and inexpensive production of the nanoparticles in bulk.

References

    1. 1)
      • 1. Abbasi, E., Milani, M., Fekri Aval, S., et al: ‘Silver nanoparticles: synthesis methods, bio-applications and properties’, Crit. Rev. Microbiol., 2016, 42, (2), pp. 173180.
    2. 2)
      • 2. Chen, D., Qiao, X., Qiu, X., et al: ‘Synthesis and electrical properties of uniform silver nanoparticles for electronic applications’, J. Mater. Sci., 2009, 44, (4), pp. 10761081.
    3. 3)
      • 3. Liu, R., Wei, Y., Zheng, J., et al: ‘A hydrogen peroxide sensor based on silver nanoparticles biosynthesized by Bacillus subtilis’, Chin. J. Chem., 2013, 31, (12), pp. 15191525.
    4. 4)
      • 4. Groneberg, D.A., Giersig, M., Welte, T., et al: ‘Nanoparticle-based diagnosis and therapy’, Curr. Drug Targets, 2006, 7, (6), pp. 643648.
    5. 5)
      • 5. Zia, M., Gul, S., Akhtar, J., et al: ‘Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities’, IET Nanobiotechnol., 2017, 11, (2), pp. 193199.
    6. 6)
      • 6. Tagad, C.K., Dugasani, S.R., Aiyer, R., et al: ‘Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor’, Sens. Actuators B Chem., 2013, 183, pp. 144149.
    7. 7)
      • 7. Evanoff, D.D., Chumanov, G.: ‘Synthesis and optical properties of silver nanoparticles and arrays’, ChemPhysChem, 2005, 6, (7), pp. 12211231.
    8. 8)
      • 8. Wang, H., Qiao, X., Chen, J., et al: ‘Preparation of silver nanoparticles by chemical reduction method’, Colloids Surf. A Physicochem. Eng. Asp., 2005, 256, (2–3), pp. 111115.
    9. 9)
      • 9. Rai, M., Duran, N.: ‘Metal nanoparticles in microbiology’ (Springer, New York, 2011).
    10. 10)
      • 10. Hamedi, S., Shojaosadati, S.A., Shokrollahzadeh, S., et al: ‘Mechanism study of silver nanoparticle production using Neurospora intermedia’, IET Nanobiotechnol.., 2017, 11, (2), pp. 157163.
    11. 11)
      • 11. Aiad, I., El-Sukkary, M.M., Soliman, E.A., et al: ‘In situ and green synthesis of silver nanoparticles and their biological activity’, J. Ind. Eng. Chem., 2014, 20, (5), pp. 34303439.
    12. 12)
      • 12. Liu, Y.-C., Lin, L.-H.: ‘New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods’, Electrochem. Commun., 2004, 6, (11), pp. 11631168.
    13. 13)
      • 13. Sharma, V.K., Yngard, R.A., Lin, Y.: ‘Silver nanoparticles: green synthesis and their antimicrobial activities’, Adv. Colloid Interface Sci., 2009, 145, (1–2), pp. 8396.
    14. 14)
      • 14. Rauwel, P., Kuunal, S., Ferdov, S., et al: ‘A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM’, Adv. Mater. Sci. Eng., 2015, 2015, pp. 19.
    15. 15)
      • 15. Ramanathan, R., O'Mullane, A.P., Parikh, R.Y., et al: ‘Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans’, Langmuir, 2011, 27, (2), pp. 714719.
    16. 16)
      • 16. Sukhwal, A., Jain, D., Joshi, A., et al: ‘Biosynthesized silver nanoparticles using aqueous leaf extract of Tagetes patula L. and evaluation of their antifungal activity against phytopathogenic fungi’, IET Nanobiotechnol.., 2017, 11, (5), pp. 531537.
    17. 17)
      • 17. Pourmortazavi, S.M., Taghdiri, M., Makari, V., et al: ‘Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa’, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136, pp. 12491254.
    18. 18)
      • 18. Dubey, S.P., Lahtinen, M., Sillanpaa, M.: ‘Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa’, Colloids Surf. A Physicochem. Eng. Asp., 2010, 364, pp. 3441.
    19. 19)
      • 19. Gade, A., Gaikwad, S., Duran, N., et al: ‘Green synthesis of silver nanoparticles by Phoma glomerata’, Micron, 2014, 59, pp. 5259.
    20. 20)
      • 20. Khatami, M., Soltani Nejad, M., Salari, S., Ghasemi Nejad Almani, P.: ‘Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani’, IET Nanobiotechnol., 2016, 10, (4), pp. 237243.
    21. 21)
      • 21. Song, J.Y., Kim, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, (1), pp. 7984.
    22. 22)
      • 22. Li, G., He, D., Qian, Y., et al: ‘Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus’, Int. J. Mol. Sci., 2012, 13, (1), pp. 466476.
    23. 23)
      • 23. Ghaseminezhad, S.M., Hamedi, S., Shojaosadati, S.A.: ‘Green synthesis of silver nanoparticles by a novel method: comparative study of their properties’, Carbohydr. Polym., 2012, 89, (2), pp. 467472.
    24. 24)
      • 24. Narayanan, K.B., Sakthivel, N.: ‘Biological synthesis of metal nanoparticles by microbes’, Adv. Colloid Interface Sci., 2010, 156, (1–2), pp. 113.
    25. 25)
      • 25. Samadi, N., Golkaran, D., Eslamifar, A., et al: ‘Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste’, J. Biomed. Nanotechnol., 2009, 5, (3), pp. 247253.
    26. 26)
      • 26. Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., et al: ‘Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity’, Colloids Surf. B Biointerfaces, 2010, 75, (1), pp. 335341.
    27. 27)
      • 27. Swarup, R., Tapan Kumar, D.: ‘Biosynthesis of silver nanoparticles by Aspergillus foetidus: optimization of physicochemical parameters’, Nanosci. Nanotechnol. Lett., 2014, 6, (3), pp. 181189.
    28. 28)
      • 28. Mitrovic, T., Stamenkovic, S., Cvetkovic, V., et al: ‘Antioxidant, antimicrobial and antiproliferative activities of five lichen species’, Int. J. Mol. Sci., 2011, 12, (8), pp. 54285448.
    29. 29)
      • 29. Mukherjee, P., Roy, M., Mandal, B.P., et al: ‘Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum’, Nanotechnology, 2008, 19, (7), p. 075103.
    30. 30)
      • 30. Mie, R., Samsudin, M.W., Din, L.B., et al: ‘Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum’, Int. J. Nanomed., 2013, 9, pp. 121127.
    31. 31)
      • 31. Henry, T., Iwen, P.C., Hinrichs, S.H.: ‘Identification of Aspergillus species using internal transcribed spacer regions 1 and 2’, J. Clin. Microbiol., 2000, 38, (4), pp. 15101515.
    32. 32)
      • 32. Ahmad, A., Mukherjee, P., Senapati, S., et al: ‘Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum’, Colloids Surf. B Biointerfaces, 2003, 28, (4), pp. 313318.
    33. 33)
      • 33. Varshney, R., Mishra, A.N., Bhadauria, S., et al: ‘A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae’, Dig. J. Nanomater. Biostruct., 2009, 4, (2), pp. 349355.
    34. 34)
      • 34. Patterson, A.L.: ‘The Scherrer formula for X-ray particle size determination’, Phys. Rev., 1939, 56, (10), pp. 978982.
    35. 35)
      • 35. Xie, J., Lee, J.Y., Wang, D.I.C., et al: ‘Silver nanoplates: from biological to biomimetic synthesis’, ACS Nano, 2007, 1, (5), pp. 429439.
    36. 36)
      • 36. Kathiresan, K., Manivannan, S., Nabeel, M.A., et al: ‘Studies on silver nanoparticle synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment’, Colloids Surf. B Biointerfaces, 2009, 71, (1), pp. 133137.
    37. 37)
      • 37. Nezammahalleh, H., Amoabediny, G.: ‘Novel method for prediction of micro/nanostructures of diphenylalanine dipeptie based on semiempirical thermodynamic study’, Fluid Phase Equilib., 2013, 34, (7), pp. 2834.
    38. 38)
      • 38. Gibbs, P.A., Seviour, R.J., Schmid, F.: ‘Growth of filamentous fungi in submerged culture: problems and possible solutions’, Crit. Rev. Biotechnol., 2000, 20, (1), pp. 1748.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0170
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address