access icon free Enhanced stability of L-asparaginase by its bioconjugation to poly(styrene-co-maleic acid) and Ecoflex nanoparticles

Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L-asparaginase (L-ASNase) is one of the first drugs used in ALL treatment. Anti-tumor activity of L-ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L-ASNase polymer bioconjugate to improve pharmacokinetic, increase half-life and stability of the enzyme. The conjugations were achieved by the cross-linking agent of 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L-ASNase to two biodegradable polymers including; Ecoflex® and poly (styrene-co-maleic acid) (PSMA) nanoparticles. To achieve optimal L-ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half-life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex® nanoparticles.

Inspec keywords: biochemistry; nanomedicine; blood; particle size; pH; biomedical materials; molecular configurations; enzymes; conducting polymers; nanoparticles; electrokinetic effects; polymer blends; molecular biophysics; cancer; biodegradable materials; bonds (chemical)

Other keywords: amide bond; Ecoflex nanoparticles; conjugated enzyme; children; poly(styrene-co-maleic acid); polymeric nanoparticles; ALL treatment; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; proteolysis; PSMA nanoparticles; pharmacokinetic; acute lymphoblastic leukaemia; crosslinking agent; pH changes; EDC conjugation; antitumour activity; enzyme; enhanced stability; zeta potential; drugs; particle size; biodegradable polymers; L-ASNase polymer bioconjugate; L-asparaginase; white blood cell cancer; biological environments; native enzyme; bioconjugation; carboxylic acid groups; optimal L-ASNase nanoparticles

Subjects: Biomolecular structure, configuration, conformation, and active sites; Biomedical materials; Other methods of nanofabrication; Physical chemistry of biomolecular solutions and condensed states; Biomolecular interactions, charge transfer complexes; Molecular bond strengths, dissociation energies, hydrogen bonding; Electrochemistry and electrophoresis; Macromolecular configuration (bonds, dimensions); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Nanotechnology applications in biomedicine

References

    1. 1)
      • 10. O'Driscoll, K.F., Korus, R.A., Ohnuma, T., et al: ‘Gel entrapped l-asparaginase: kinetic behavior and antitumor activity’, J. Pharmacol. Exp. Ther., 1975, 195, (2), pp. 382388.
    2. 2)
      • 23. Zhang, L., Gu, F.X., Chan, J.M., et al: ‘Nanoparticles in medicine: therapeutic applications and developments’, Clin. Pharm. Ther., 2008, 83, (5), pp. 761769.
    3. 3)
      • 8. Jefferies, S.R., Richards, R., Bernath, F.R.: ‘Preliminary studies with lasparaginase bound to implantable bovine collagen heterografts: a potential long-term, sustained dosage, antitumor enzyme therapy system’, Biomat. Med. Dev. Art. Org., 1977, 5, (4), pp. 337354.
    4. 4)
      • 19. Qian, G., Zhou, J., Ma, J., et al: ‘Chemical modification of L-asparaginase with N, O-carboxymethyl chitosan and its effects on plasma half-life and other properties’, Sci. China Ser. B Chem., 1997, 40, (4), pp. 337341.
    5. 5)
      • 5. Riccardi, R., Holcenberg, J.S., Glaubiger, D.L., et al: ‘L-asparaginase pharmacokinetics and asparagine levels in cerebrospinal fluid of rhesus monkeys and humans’, Cancer Res., 1981, 41, (11), pp. 45544558.
    6. 6)
      • 25. Khazaei, A., Saednia, S., Saien, J., et al: ‘Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release’, Acta Chim. Slov., 2013, 60, (4), pp. 724731.
    7. 7)
      • 9. Mori, T., Tosa, T., Chibata, I.: ‘Preparation and properties of lasparaginase entrapped in the lattice of polyacrylamide gel’, Cancer Res., 1974, 34, (11), pp. 30663068.
    8. 8)
      • 20. Zhang, Y.Q., Tao, M.L., Shen, W.D., et al: ‘Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters’, Biomaterials, 2004, 25, (17), pp. 37513759.
    9. 9)
      • 27. Soares, A.L., Guimarães, G.M., Polakiewicz, B., et al: ‘Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase’, Int. J. Pharm., 2002, 237, (1), pp. 163170.
    10. 10)
      • 1. Mehta, P.: ‘Adult acute lymphocytic leukemia: biology and treatment’, JAMA, 2011, 305, (22), pp. 23532358.
    11. 11)
      • 12. Finkelstein, M., Weissmann, G.: ‘The introduction of enzymes into cells by means of liposomes’, J. Lipid Res., 1978, 19, (3), pp. 289303.
    12. 12)
      • 13. Gaspar, M.M., Blanco, D., Cruz, M.E., et al: ‘Formulation of L-asparaginase-loaded poly (lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release’, J. Control. Rel., 1998, 52, (1), pp. 5362.
    13. 13)
      • 3. Pui, C.H., Relling, M.V., Downing, J.R.: ‘Acute lymphoblastic leukemia’, N. Engl. J. Med., 2004, 350, (15), pp. 15351548.
    14. 14)
      • 16. Poznansky, M.J., Shandling, M., Salkie, M.A., et al: ‘Advantages in the use of l-asparaginase-albumin polymer as an antitumor agent’, Cancer Res., 1982, 42, (3), pp. 10201025.
    15. 15)
      • 14. Bachet, J.B., Gay, F., Maréchal, R., et al: ‘Asparagine synthetase expression and phase I study with L-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma’, Pancreas, 2015, 44, (7), pp. 11411147.
    16. 16)
      • 26. Wriston, J.C.Jr., , Yellin, T.O.: ‘L-asparaginase: a review’, Adv. Enzymol. Relat. Areas Mol. Biol., 1973, 39, pp. 185248.
    17. 17)
      • 17. Wileman, T.E.: ‘Properties of l-asparaginase-dextran conjugates’, Adv. Drug Deliv. Rev., 1991, 6, (2), pp. 167180.
    18. 18)
      • 24. Balcao, V.M., Mateo, C., Fernández-Lafuente, R., et al: ‘Structural and functional stabilization of L-asparaginase via multisubunit immobilization onto highly activated supports’, Biotechnol. Prog., 2001, 17, (3), pp. 537542.
    19. 19)
      • 28. Zhang, Y.Q., Tao, M.L., Shen, W.D., et al: ‘Synthesis of silk sericin peptides–L-asparaginase bioconjugates and their characterization’, J. Chem. Technol. Biotechnol., 2006, 81, (2), pp. 136145.
    20. 20)
      • 29. Ashrafi, H., Amini, M., Mohammadi-Samani, S., et al: ‘Nanostructure l-asparaginase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment’, Int. J. Biol. Mcromol., 2013, 62, pp. 180187.
    21. 21)
      • 15. Pasut, G., Veronese, F.M.: ‘Polymer-drug conjugation, recent achievements and general strategies’, Prog. Polym. Sci., 2007, 32, (8), pp. 933961.
    22. 22)
      • 4. Stecher, A.L., De Deus, P.M., Polikarpov, I., et al: ‘Stability of L-asparaginase: an enzyme used in leukemia treatment’, Pharm. Acta Hel., 1999, 74, (1), pp. 19.
    23. 23)
      • 18. Nambu, M.: ‘Process for producing immobilized l-asparaginase preparations for the therapy of leukemia’. US Patent, 1986, 4617271.
    24. 24)
      • 2. Pui, C.H., Evans, W.E.: ‘Treatment of acute lymphoblastic leukemia’, N. Engl. J. Med., 2006, 354, (2), pp. 166178.
    25. 25)
      • 6. Veronese, F.M., Monfardini, C., Caliceti, P., et al: ‘Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly (ethylene glycol)’, J. Control. Rel., 1996, 40, (3), pp. 199209.
    26. 26)
      • 11. Jean-François, J., D'Urso, E.M., Fortier, G., et al: ‘Immobilization of L-asparaginase into a biocompatible poly (ethylene glycol)-albumin hydrogel: evaluation of performance in vivo’, Biotechnol. Appl. Biochem., 1997, 26, (3), pp. 203212.
    27. 27)
      • 22. Ashihara, Y., Kono, T., Yamazaki, S., et al: ‘Modification of E. coli lasparaginase with polyethylene glycol dispearance of binding ability to anti-l-asparaginase serum’, Biochem. Biophys. Res. Commun., 1978, 83, (2), p. 385.
    28. 28)
      • 21. Zhang, Y.Q., Zhou, W.L., Shen, W.D., et al: ‘Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates’, J. Biotechnol., 2005, 120, (3), pp. 315326.
    29. 29)
      • 7. Karsakevich, A.S., Kinstler, O.B., Dauvarte, A.Z., et al: ‘High molecular weight L-asparaginase derivatives based on a water-soluble carboxymethyl cellulose: biological properties’, Vopr. Med. Khim., 1988, 34, (3), pp. 107110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0156
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading