access icon free Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology

This study concerns the optimisation of green synthesis of manganese oxide nanoparticles (MnO NPs) with Dittrichia graveolens (L.) extract via response surface methodology (RSM). Central composite design was used to evaluate the effect of pH, time, and the extract to the metal ratio on the synthesised nanoparticles (NPs). Nine runs were designed to investigate the effect of each parameter while NPs were synthesised under different conditions. Considering the p-values (p-value < 0.05), it is indicated that the extract to the metal ratio was the most effective parameter. The synthesised NPs were characterised using UV–vis. Synthesis of the NPs by polyphenolic compounds of green reducing agent and their stabilisation by curcumin was confirmed by Fourier transform infrared spectra and the surface morphology of the spherical MnO NPs was studied by field-emission scanning electron microscopy and transmission electron microscope techniques. The present researchers claimed the optimal condition as follows: time = 56.7 min, pH = 7.2, and the extract to the metal ratio = 87.9 v/v. MnO NPs at optimum condition were then employed for degradation of industrial dyes and they showed high dye degradation activity against Rhodamine B and light green dye. The average size of the synthesised MnO NPs at optimal condition was claimed to be nearly 38 nm.

Inspec keywords: dyes; ultraviolet spectra; nanoparticles; optimisation; transmission electron microscopy; particle size; Fourier transform infrared spectra; manganese compounds; visible spectra; response surface methodology; field emission scanning electron microscopy; surface morphology; nanofabrication

Other keywords: surface morphology; UV-vis spectra; response surface methodology; transmission electron microscopy; polyphenolic compounds; green synthesis; manganese oxide nanoparticles; Fourier transform infrared spectra; Rhodamine B; time 56.7 min; MnO; reducing agent; industrial dye degradation; light green dye; field-emission scanning electron microscopy; optimisation; curcumin; central composite design; Dittrichia graveolens extract

Subjects: Visible and ultraviolet spectra of other nonmetals; Infrared and Raman spectra in inorganic crystals; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Other methods of nanofabrication; Solid surface structure; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 6. González-Coloma, A., Martín-Benito, D., Mohamed, N., et al: ‘Antifeedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L’, Biochem. Syst. Ecol., 2006, 34, (8), pp. 609616.
    2. 2)
      • 35. Trusheva, B., Trunkova, D., Bankova, V.: ‘Different extraction methods of biologically active components from propolis: a preliminary study’, Chem. Cent. J., 2007, 1, (1), p. 13.
    3. 3)
      • 16. Kaufmann, B., Christen, P.: ‘Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction’, Phytochem. Anal., 2002, 13, (2), pp. 105113.
    4. 4)
      • 12. Azwanida, N.: ‘A review on the extraction methods use in medicinal plants, principle, strength and limitation’, Med. Aromat Plants, 2015, 4, pp. 196, doi: 2167–0412.1000196.
    5. 5)
      • 13. Miguel, M.G.: ‘Antioxidant and anti-inflammatory activities of essential oils: a short review’, Molecules, 2010, 15, (12), pp. 92529287.
    6. 6)
      • 41. Wang, M., Na, E.K., Kim, J.S., et al: ‘Photoluminescence of ZnO nanoparticles prepared by a low-temperature colloidal chemistry method’, Mater. Lett., 2007, 61, (19), pp. 40944096.
    7. 7)
      • 34. De Castro, M.L., Garcıa-Ayuso, L.: ‘Soxhlet extraction of solid materials: an outdated technique with a promising innovative future’, Anal. Chim. Acta, 1998, 369, (1), pp. 110.
    8. 8)
      • 25. Mitic, V., Jovanovic, V.S., Ilic, M., et al: ‘Dittrichia graveolens (L.) Greuter essential oil: chemical composition, multivariate analysis, and antimicrobial activity’, Chem. Biodivers., 2016, 13, (1), pp. 8590.
    9. 9)
      • 14. Burt, S.: ‘Essential oils: their antibacterial properties and potential applications in foods – a review’, Int. J. Food Microbiol., 2004, 94, (3), pp. 223253.
    10. 10)
      • 26. Topcu, G., Oksuz, S., Shieh, H.L., et al: ‘Cytotoxic and antibacterial sesquiterpenes from Inula-graveolens’, Phytochemistry, 1993, 33, (2), pp. 407410.
    11. 11)
      • 38. Ranitha, M., Nour, A.H., Ziad, A., et al: ‘Optimization of microwave assisted hydrodistillation of Lemongrass (Cymbopogon citratus) using response surface methodology’, Int. J. Res. Eng. Technol., 2014, 3, pp. 514.
    12. 12)
      • 18. Hagerman, A.E., Butler, L.G.: ‘Choosing appropriate methods and standards for assaying tannin’, J. Chem. Ecol., 1989, 15, (6), pp. 17951810.
    13. 13)
      • 8. Vishwasrao, C., Momin, B., Ananthanarayan, L.: ‘Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity’, Waste Biomass Valorization, 2018, pp. 111.
    14. 14)
      • 39. Sangeetha, G., Rajeshwari, S., Venckatesh, R.: ‘Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties’, Mater. Res. Bull., 2011, 46, (12), pp. 25602566.
    15. 15)
      • 5. Nerio, L.S., Olivero-Verbel, J., Stashenko, E.: ‘Repellent activity of essential oils: a review’, Bioresour. Technol., 2010, 101, (1), pp. 372378.
    16. 16)
      • 24. Giamperi, L., Bucchini, A., Cara, P., et al: ‘Composition and antioxidant activity of Nepeta foliosa essential oil from Sardinia (Italy)’, Chem. Nat. Compd., 2009, 45, (4), pp. 554556.
    17. 17)
      • 7. Haseeb, M.T., Hussain, M.A., Abbas, K., et al: ‘Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications’, Int. J. Nanomed., 2017, 12, p. 2845.
    18. 18)
      • 36. Rajakumar, G., Rahuman, A.A., Priyamvada, B., et al: ‘Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles’, Mater. Lett., 2012, 68, pp. 115117.
    19. 19)
      • 30. Hagerman, A.E., Butler, L.G.: ‘The specificity of proanthocyanidin-protein interactions’, J. Biol. Chem., 1981, 256, (9), pp. 44944497.
    20. 20)
      • 40. Huang, J., Li, Q., Sun, D., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, (10), p. 105104.
    21. 21)
      • 28. Moon, S.A., Salunke, B.K., Alkotaini, B., et al: ‘Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract’, IET Nanobiotechnol., 2015, 9, (4), pp. 220225.
    22. 22)
      • 27. Nony, C.R., Bowman, M.C., Cairns, T., et al: ‘Metabolism studies of an azo dye and pigment in the hamster based on analysis of the urine for potentially carcinogenic aromatic amine metabolites’, J. Anal. Toxicol., 1980, 4, (3), pp. 132140.
    23. 23)
      • 15. Kumar, R., Tripathi, Y.: ‘Getting fragrance from plants’, ‘Training manual on extraction technology of natural dyes & aroma therapy and cultivation value addition of medicinal plants’ (Forest Research Institute, Dehradun, Indian, 2011, 1 edn.), pp. 77102.
    24. 24)
      • 23. Pieroni, A., Giusti, M.E., De Pasquale, C., et al: ‘Circum-Mediterranean cultural heritage and medicinal plant uses in traditional animal healthcare: a field survey in eight selected areas within the RUBIA project’, J. Ethnobiol. Ethnomed., 2006, 2, (1), p. 1.
    25. 25)
      • 17. Steffen, L.M.: ‘Eat your fruit and vegetables’, Lancet, 2006, 367, (9507), pp. 278279.
    26. 26)
      • 2. Bakkali, F., Averbeck, S., Averbeck, D., et al: ‘Biological effects of essential oils–a review’, Food Chem. Toxicol., 2008, 46, (2), pp. 446475.
    27. 27)
      • 10. Savelev, S., Okello, E., Perry, N., et al: ‘Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil’, Pharmacol. Biochem. Behav., 2003, 75, (3), pp. 661668.
    28. 28)
      • 22. Blanc, M.C., Muselli, A., Bradesi, P., et al: ‘Chemical composition and variability of the essential oil of Inula graveolens from Corsica’, Flavour Fragrance J., 2004, 19, (4), pp. 314319.
    29. 29)
      • 31. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346356.
    30. 30)
      • 32. Eppler, A.S., Rupprechter, G., Anderson, E.A., et al: ‘Thermal and chemical stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron microscopy and atomic force microscopy’, J. Phys. Chem. B, 2000, 104, (31), pp. 72867292.
    31. 31)
      • 9. Hussain, M.A., Shah, A., Jantan, I., et al: ‘One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles’, J. Nanobiotechnol., 2014, 12, (1), p. 53.
    32. 32)
      • 11. Savelev, S.U., Okello, E.J., Perry, E.K.: ‘Butyryl-and acetyl-cholinesterase inhibitory activities in essential oils of salvia species and their constituents’, Phytother. Res., 2004, 18, (4), pp. 315324.
    33. 33)
      • 33. Rathi, B., Bodhankar, S., Baheti, A.: ‘Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats’, 2006.
    34. 34)
      • 37. Muzaffar, S., Tahir, H.: ‘Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology’, J. Mol. Liq., 2018, 252, pp. 368382.
    35. 35)
      • 3. Treutter, D.: ‘Significance of flavonoids in plant resistance: a review’, Environ. Chem. Lett., 2006, 4, (3), p. 147.
    36. 36)
      • 21. Kumar, V., Singh, K., Panwar, S., et al: ‘Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of P-nitrophenol’, Int. Nano Lett., 2017, 7, (2), pp. 123131.
    37. 37)
      • 29. Haslam, E.: ‘Vegetable tannins. Biochemistry of plant phenolics’ (Springer, US, 1979), pp. 475523.
    38. 38)
      • 1. Makkar, H.P., Blümmel, M., Borowy, N.K., et al: ‘Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods’, J. Sci. Food Agric., 1993, 61, (2), pp. 161165.
    39. 39)
      • 19. Becker, K., Makkar, H.P., Siddhuraju, P., et al: ‘Plant secondary metabolites’, (Springer, Humana Press, 2007), pp. 13.
    40. 40)
      • 20. Hagerman, A.E., Butler, L.G.: ‘Protein precipitation method for the quantitative determination of tannins’, J. Agric. Food Chem., 1978, 26, (4), pp. 809812.
    41. 41)
      • 4. Handa, S.S., Khanuja, S.P.S., Longo, G., et al: ‘Extraction technologies for medicinal and aromatic plants’ (Trieste (Italy): Earth, Environmental and Marine Sciences and Technologies, 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0145
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading