http://iet.metastore.ingenta.com
1887

Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology

Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study concerns the optimisation of green synthesis of manganese oxide nanoparticles (MnO NPs) with Dittrichia graveolens (L.) extract via response surface methodology (RSM). Central composite design was used to evaluate the effect of pH, time, and the extract to the metal ratio on the synthesised nanoparticles (NPs). Nine runs were designed to investigate the effect of each parameter while NPs were synthesised under different conditions. Considering the p-values (p-value < 0.05), it is indicated that the extract to the metal ratio was the most effective parameter. The synthesised NPs were characterised using UV–vis. Synthesis of the NPs by polyphenolic compounds of green reducing agent and their stabilisation by curcumin was confirmed by Fourier transform infrared spectra and the surface morphology of the spherical MnO NPs was studied by field-emission scanning electron microscopy and transmission electron microscope techniques. The present researchers claimed the optimal condition as follows: time = 56.7 min, pH = 7.2, and the extract to the metal ratio = 87.9 v/v. MnO NPs at optimum condition were then employed for degradation of industrial dyes and they showed high dye degradation activity against Rhodamine B and light green dye. The average size of the synthesised MnO NPs at optimal condition was claimed to be nearly 38 nm.

References

    1. 1)
      • 1. Makkar, H.P., Blümmel, M., Borowy, N.K., et al: ‘Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods’, J. Sci. Food Agric., 1993, 61, (2), pp. 161165.
    2. 2)
      • 2. Bakkali, F., Averbeck, S., Averbeck, D., et al: ‘Biological effects of essential oils–a review’, Food Chem. Toxicol., 2008, 46, (2), pp. 446475.
    3. 3)
      • 3. Treutter, D.: ‘Significance of flavonoids in plant resistance: a review’, Environ. Chem. Lett., 2006, 4, (3), p. 147.
    4. 4)
      • 4. Handa, S.S., Khanuja, S.P.S., Longo, G., et al: ‘Extraction technologies for medicinal and aromatic plants’ (Trieste (Italy): Earth, Environmental and Marine Sciences and Technologies, 2008).
    5. 5)
      • 5. Nerio, L.S., Olivero-Verbel, J., Stashenko, E.: ‘Repellent activity of essential oils: a review’, Bioresour. Technol., 2010, 101, (1), pp. 372378.
    6. 6)
      • 6. González-Coloma, A., Martín-Benito, D., Mohamed, N., et al: ‘Antifeedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L’, Biochem. Syst. Ecol., 2006, 34, (8), pp. 609616.
    7. 7)
      • 7. Haseeb, M.T., Hussain, M.A., Abbas, K., et al: ‘Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications’, Int. J. Nanomed., 2017, 12, p. 2845.
    8. 8)
      • 8. Vishwasrao, C., Momin, B., Ananthanarayan, L.: ‘Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity’, Waste Biomass Valorization, 2018, pp. 111.
    9. 9)
      • 9. Hussain, M.A., Shah, A., Jantan, I., et al: ‘One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles’, J. Nanobiotechnol., 2014, 12, (1), p. 53.
    10. 10)
      • 10. Savelev, S., Okello, E., Perry, N., et al: ‘Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil’, Pharmacol. Biochem. Behav., 2003, 75, (3), pp. 661668.
    11. 11)
      • 11. Savelev, S.U., Okello, E.J., Perry, E.K.: ‘Butyryl-and acetyl-cholinesterase inhibitory activities in essential oils of salvia species and their constituents’, Phytother. Res., 2004, 18, (4), pp. 315324.
    12. 12)
      • 12. Azwanida, N.: ‘A review on the extraction methods use in medicinal plants, principle, strength and limitation’, Med. Aromat Plants, 2015, 4, pp. 196, doi: 2167–0412.1000196.
    13. 13)
      • 13. Miguel, M.G.: ‘Antioxidant and anti-inflammatory activities of essential oils: a short review’, Molecules, 2010, 15, (12), pp. 92529287.
    14. 14)
      • 14. Burt, S.: ‘Essential oils: their antibacterial properties and potential applications in foods – a review’, Int. J. Food Microbiol., 2004, 94, (3), pp. 223253.
    15. 15)
      • 15. Kumar, R., Tripathi, Y.: ‘Getting fragrance from plants’, ‘Training manual on extraction technology of natural dyes & aroma therapy and cultivation value addition of medicinal plants’ (Forest Research Institute, Dehradun, Indian, 2011, 1 edn.), pp. 77102.
    16. 16)
      • 16. Kaufmann, B., Christen, P.: ‘Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction’, Phytochem. Anal., 2002, 13, (2), pp. 105113.
    17. 17)
      • 17. Steffen, L.M.: ‘Eat your fruit and vegetables’, Lancet, 2006, 367, (9507), pp. 278279.
    18. 18)
      • 18. Hagerman, A.E., Butler, L.G.: ‘Choosing appropriate methods and standards for assaying tannin’, J. Chem. Ecol., 1989, 15, (6), pp. 17951810.
    19. 19)
      • 19. Becker, K., Makkar, H.P., Siddhuraju, P., et al: ‘Plant secondary metabolites’, (Springer, Humana Press, 2007), pp. 13.
    20. 20)
      • 20. Hagerman, A.E., Butler, L.G.: ‘Protein precipitation method for the quantitative determination of tannins’, J. Agric. Food Chem., 1978, 26, (4), pp. 809812.
    21. 21)
      • 21. Kumar, V., Singh, K., Panwar, S., et al: ‘Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of P-nitrophenol’, Int. Nano Lett., 2017, 7, (2), pp. 123131.
    22. 22)
      • 22. Blanc, M.C., Muselli, A., Bradesi, P., et al: ‘Chemical composition and variability of the essential oil of Inula graveolens from Corsica’, Flavour Fragrance J., 2004, 19, (4), pp. 314319.
    23. 23)
      • 23. Pieroni, A., Giusti, M.E., De Pasquale, C., et al: ‘Circum-Mediterranean cultural heritage and medicinal plant uses in traditional animal healthcare: a field survey in eight selected areas within the RUBIA project’, J. Ethnobiol. Ethnomed., 2006, 2, (1), p. 1.
    24. 24)
      • 24. Giamperi, L., Bucchini, A., Cara, P., et al: ‘Composition and antioxidant activity of Nepeta foliosa essential oil from Sardinia (Italy)’, Chem. Nat. Compd., 2009, 45, (4), pp. 554556.
    25. 25)
      • 25. Mitic, V., Jovanovic, V.S., Ilic, M., et al: ‘Dittrichia graveolens (L.) Greuter essential oil: chemical composition, multivariate analysis, and antimicrobial activity’, Chem. Biodivers., 2016, 13, (1), pp. 8590.
    26. 26)
      • 26. Topcu, G., Oksuz, S., Shieh, H.L., et al: ‘Cytotoxic and antibacterial sesquiterpenes from Inula-graveolens’, Phytochemistry, 1993, 33, (2), pp. 407410.
    27. 27)
      • 27. Nony, C.R., Bowman, M.C., Cairns, T., et al: ‘Metabolism studies of an azo dye and pigment in the hamster based on analysis of the urine for potentially carcinogenic aromatic amine metabolites’, J. Anal. Toxicol., 1980, 4, (3), pp. 132140.
    28. 28)
      • 28. Moon, S.A., Salunke, B.K., Alkotaini, B., et al: ‘Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract’, IET Nanobiotechnol., 2015, 9, (4), pp. 220225.
    29. 29)
      • 29. Haslam, E.: ‘Vegetable tannins. Biochemistry of plant phenolics’ (Springer, US, 1979), pp. 475523.
    30. 30)
      • 30. Hagerman, A.E., Butler, L.G.: ‘The specificity of proanthocyanidin-protein interactions’, J. Biol. Chem., 1981, 256, (9), pp. 44944497.
    31. 31)
      • 31. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346356.
    32. 32)
      • 32. Eppler, A.S., Rupprechter, G., Anderson, E.A., et al: ‘Thermal and chemical stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron microscopy and atomic force microscopy’, J. Phys. Chem. B, 2000, 104, (31), pp. 72867292.
    33. 33)
      • 33. Rathi, B., Bodhankar, S., Baheti, A.: ‘Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats’, 2006.
    34. 34)
      • 34. De Castro, M.L., Garcıa-Ayuso, L.: ‘Soxhlet extraction of solid materials: an outdated technique with a promising innovative future’, Anal. Chim. Acta, 1998, 369, (1), pp. 110.
    35. 35)
      • 35. Trusheva, B., Trunkova, D., Bankova, V.: ‘Different extraction methods of biologically active components from propolis: a preliminary study’, Chem. Cent. J., 2007, 1, (1), p. 13.
    36. 36)
      • 36. Rajakumar, G., Rahuman, A.A., Priyamvada, B., et al: ‘Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles’, Mater. Lett., 2012, 68, pp. 115117.
    37. 37)
      • 37. Muzaffar, S., Tahir, H.: ‘Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology’, J. Mol. Liq., 2018, 252, pp. 368382.
    38. 38)
      • 38. Ranitha, M., Nour, A.H., Ziad, A., et al: ‘Optimization of microwave assisted hydrodistillation of Lemongrass (Cymbopogon citratus) using response surface methodology’, Int. J. Res. Eng. Technol., 2014, 3, pp. 514.
    39. 39)
      • 39. Sangeetha, G., Rajeshwari, S., Venckatesh, R.: ‘Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties’, Mater. Res. Bull., 2011, 46, (12), pp. 25602566.
    40. 40)
      • 40. Huang, J., Li, Q., Sun, D., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, (10), p. 105104.
    41. 41)
      • 41. Wang, M., Na, E.K., Kim, J.S., et al: ‘Photoluminescence of ZnO nanoparticles prepared by a low-temperature colloidal chemistry method’, Mater. Lett., 2007, 61, (19), pp. 40944096.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0145
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address