Formulation and characterisation of poly(lactic-co-glycolic acid) encapsulated clove oil nanoparticles for dental applications

Formulation and characterisation of poly(lactic-co-glycolic acid) encapsulated clove oil nanoparticles for dental applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigated synthesis and characterisation of Nano-PLGA (poly(lactic-co-glycolic acid))/CO (clove-oil) nanoparticles. The delivery of drug-loaded nanoparticles to demineralised dentin substrates and their morphological association with a two-step etch-and-rinse adhesive system was studied. The effect of Nano-PLGA/CO pretreatment on micro-tensile bond strength of resin-dentin bonding was scrutinised. This study employed CO-containing PLGA nanoparticles as a delivery vehicle for sustainable drug release inside dentinal-tubules for potential dental applications. Emulsion evaporation resulted in uniformly distributed negatively-charged Nano-PLGA/Blank and Nano-PLGA/CO nanoparticles. Scanning electron microscopy/ transmission electron microscopy revealed even spherical nanoparticles with smooth texture. High CO-loading and encapsulation were achieved. Moreover, controlled CO-release was evidenced after 15 days, in-vitro and ex-vivo. Nanoparticles exhibited low initial toxicity towards human mesenchymal stem cells with excellent antibacterial properties. Nanoparticles penetration inside dentinal-tubules indicated a close correlation with resin-tags. Nano-PLGA/CO pretreatment indicated reduction in short-term bond strength of resin-dentin specimens. Nano-PLGA/CO as model drug-loaded nanoparticles showed excellent metric and antibacterial properties, low toxicity and sustained CO release. However, the loading of nanoparticles with CO up to ∼10 mg (Nano-PLGA/CO:10) did not adversely affect short-term bond strength values. This drug-delivery strategy could be further expanded to deliver other pulp-sedative agents and medications with other dental relevance.

Inspec keywords: bonds (chemical); tensile strength; transmission electron microscopy; biomedical materials; nanomedicine; encapsulation; emulsions; biomechanics; nanoparticles; scanning electron microscopy; proteins; texture; dentistry; nanofabrication; evaporation; resins; molecular biophysics; antibacterial activity; biochemistry; filled polymers; drug delivery systems; nanocomposites; adhesives; cellular biophysics

Other keywords: pulp-sedative agents; short-term bond strength; resin-dentin specimens; resin-dentin bonded specimens; morphological association; human mesenchymal stem cells; smooth texture; antibiofilm properties; time 15 d; drug-loaded nanoparticle delivery; uniformly-distributed negatively-charged nanoPLGA-blank; dentinal-tubules; emulsion evaporation; dental applications; poly(lactic-co-glycolic acid) encapsulated clove oil nanoparticles; delivery vehicle; antibacterial properties; deep nanoparticle penetration; controlled CO-release; two-step etch-and-rinse adhesive system; sustainable drug release; resin-tags; nanoPLGA-CO pretreatment; microtensile bond strength; potential dental applications; spherical nanoparticles; scanning electron microscopy-transmission electron microscopy; high CO-loading; demineralised dentin substrates; sustained CO release; CO-containing PLGA nanoparticles; metric properties; simulated pulpal pressure

Subjects: Biomolecular interactions, charge transfer complexes; Emulsions and suspensions; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biomechanics, biorheology, biological fluid dynamics; Patient care and treatment; Molecular bond strengths, dissociation energies, hydrogen bonding; Macromolecular configuration (bonds, dimensions); Biomolecular structure, configuration, conformation, and active sites; Nanotechnology applications in biomedicine; Biomedical materials; Patient care and treatment; Cellular biophysics; Physical chemistry of biomolecular solutions and condensed states


    1. 1)
      • 1. Mjör, I.A., Ferrari, M.: ‘Pulp-dentin biology in restorative dentistry. part 6: reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques’, Quintessence Int., 2002, 33, (1), pp. 3563.
    2. 2)
      • 2. Markowitz, K., Moynihan, M., Liu, M., et al: ‘Biologic properties of eugenol and zinc oxide-eugenol: a clinically oriented review’, Oral Surg. Oral Med. Oral Pathol., 1992, 73, (6), pp. 729737.
    3. 3)
      • 3. Moller, B., Schroder, U., Granath, L.: ‘Effect of IRM on human dental pulp’, Eur. J. Oral Sci., 1983, 91, (4), pp. 281287.
    4. 4)
      • 4. Ganss, C., Jung, M.: ‘Effect of eugenol-containing temporary cements on bond strength of composite to dentin’, Oper. Dent., 1998, 23, pp. 5562.
    5. 5)
      • 5. Tao, L., Anderson, R.W., Pashley, D.H.: ‘Effect of endodontic procedures on root dentin permeability’, J. Endodont., 1991, 17, (12), pp. 583588.
    6. 6)
      • 6. Watts, A., Paterson, R.: ‘Pulpal response to a zinc oxide-eugenol cement’, Int. Endodont. J., 1987, 20, (2), pp. 8286.
    7. 7)
      • 7. Silva, J., Queiroz, D., Azevedo, L., et al: ‘Effect of eugenol exposure time and post-removal delay on the bond strength of a self-etching adhesive to dentin’, Oper. Dent., 2011, 36, (1), pp. 6671.
    8. 8)
      • 8. Ngoh, E.C., Pashley, D.H., Loushine, R.J., et al: ‘Effects of eugenol on resin bond strengths to root canal dentin’, J. Endodont., 2001, 27, (6), pp. 411414.
    9. 9)
      • 9. Terata, R.: ‘Characterization of enamel and dentin surfaces after removal of temporary cement’, Dent. Mater. J., 1993, 12, (1), pp. 1828.
    10. 10)
      • 10. Ajaj, R., Al-Mutairi, S., Ghandoura, S.: ‘Effect of eugenol on bond strength of adhesive resin: a systematic review’, J. Oral Health Dent. Manage., 2014, 13, (4), pp. 950958.
    11. 11)
      • 11. Sarrami, N., Pemberton, M., Thornhill, M., et al: ‘Adverse reactions associated with the use of eugenol in dentistry’, Br. Dent. J., 2002, 193, (5), pp. 253255.
    12. 12)
      • 12. Shah, A., Jani, M., Shah, H., et al: ‘Antimicrobial effect of clove oil (Laung) extract on Enterococcus faecalis’, J. Adv. Oral Res., 2014, 5, (3), pp. 3638.
    13. 13)
      • 13. Gomes, C., Moreira, R.G., Castell-Perez, E.: ‘Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications’, J. Food Sci., 2011, 76, (2), pp. N16N24.
    14. 14)
      • 14. Alshamsan, A., ‘Nanoprecipitation is more efficient than emulsion solvent evaporation method to Encapsulate cucurbitacin I in PLGA nanoparticles’, Saudi Pharm. J., 2014, 22, (3), pp. 219222.
    15. 15)
      • 15. Hernández-Sánchez, P., López-Miranda, S., Lucas-Abellán, C., et al: ‘Complexation of eugenol (EG), as main component of clove oil and as pure compound, with [Beta]-and HP-[Beta]-CDs’, Food Nutr. Sci., 2012, 3, (6), pp. 716723.
    16. 16)
      • 16. Priyadarshini, B., Selvan, S., Lu, T., et al: ‘Chlorhexidine nanocapsule drug delivery approach to the resin-dentin interface’, J. Dent. Res., 2016, 95, (9), pp. 10651072.
    17. 17)
      • 17. Hannig, C., Hannig, M., Rehmer, O., et al: ‘Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ’, Arch. Oral Biol., 2007, 52, (11), pp. 10481056.
    18. 18)
      • 18. Yang, A., Yang, L., Liu, W., et al: ‘Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation’, Int. J. Pharm., 2007, 331, (1), pp. 123132.
    19. 19)
      • 19. Nuchuchua, O., Saesoo, S., Sramala, I., et al: ‘Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol’, Food Res. Int., 2009, 42, (8), pp. 11781185.
    20. 20)
      • 20. Yang, Y., Song, L.X.: ‘Study on the inclusion compounds of eugenol with α-, β-, γ- and heptakis (2, 6-di-O-methyl)-β-cyclodextrins’, J. Incl. Phenom. Macrocycl. Chem., 2005, 53, (1-2), pp. 2733.
    21. 21)
      • 21. Chaieb, K., Hajlaoui, H., Zmantar, T., et al: ‘The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review’, Phytother. Res., 2007, 21, (6), pp. 501506.
    22. 22)
      • 22. Kalemba, D., Kunicka, A.: ‘Antibacterial and antifungal properties of essential oils’, Curr. Med. Chem., 2003, 10, (10), pp. 813829.
    23. 23)
      • 23. ADA Council on Scientific Affairs: ‘Direct and indirect restorative materials’, J. Am. Dent. Assoc., 2003, 134, (4), pp. 463472.
    24. 24)
      • 24. Kasugai, S., Hasegawa, N., Ogura, H.: ‘A simple in vito cytotoxicity test using the MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay: analysis of eugenol toxicity on dental pulp cells (RPC-C2A)’, Jpn. J. Pharmacol., 1990, 52, (1), pp. 95100.
    25. 25)
      • 25. Anwer, M.K., Jamil, S., Ibnouf, E.O., et al: ‘Enhanced antibacterial effects of clove essential oil by nanoemulsion’, J. Oleo Sci., 2014, 63, (4), pp. 347354.
    26. 26)
      • 26. Nzeako, B., Al-Kharousi, Z.S., Al-Mahrooqui, Z.: ‘Antimicrobial activities of clove and thyme extracts’, Sultan Qaboos Univ. Med. J., 2006, 6, pp. 3339.
    27. 27)
      • 27. Sansdrap, P., Moës, A.-J.: ‘In vitro evaluation of the hydrolytic degradation of dispersed and aggregated poly (DL-lactide-co-glycolide) microspheres’, J. Control. Release, 1997, 43, (1), pp. 4758.
    28. 28)
      • 28. Tchakalova, V., Testard, F., Wong, K., et al: ‘Solubilization and interfacial curvature in microemulsions: I. Interfacial expansion and co-extraction of oil’, Colloids. Surf. A Physicochem. Eng. Asp., 2008, 331, (1), pp. 3139.
    29. 29)
      • 29. DeRuiter, J.: ‘Carboxylic acid structure and chemistry: part 1’, Princ. Drug Action, 2005, 1, pp. 110.
    30. 30)
      • 30. Sahana, D., Mittal, G., Bhardwaj, V., et al: ‘Plga nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug’, J. Pharm. Sci., 2008, 97, (4), pp. 15301542.
    31. 31)
      • 31. Woody, T., Davis, R.: ‘The effect of eugenol-containing and eugenol-free temporary cements on microleakage in resin bonded restorations’, Oper. Dent., 1991, 17, (5), pp. 175180.
    32. 32)
      • 32. Pashley, D.H., Carvalho, R.M., Sano, H., et al: ‘The microtensile bond test: a review’, J. Adhes. Dent., 1999, 1, (4), pp. 299309.
    33. 33)
      • 33. Pinto, K.T., Stanislawczuk, R., Loguercio, A.D., et al: ‘Effect of exposure time of zinc oxide eugenol restoration on microtensile bond strength of adhesives to dentin’, Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac., 2014, 55, (2), pp. 8388.
    34. 34)
      • 34. Lin, C.P., Chen, Y.J., Lee, Y.L., et al: ‘Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts’, J. Biomed. Mater. Res. B Appl. Biomater., 2004, 71, (2), pp. 429440.
    35. 35)
      • 35. Absalan, A., Mesbah Namin, S.A., Tiraihi, T., et al: ‘The effects of cinnamaldehyde and eugenol on human adipose-derived mesenchymal stem cells viability, growth and differentiation: a cheminformatics and in vitro study’, Avicenna J. Phytomed., 2016, 6, (6), pp. 643657.
    36. 36)
      • 36. Makadia, H.K., Siegel, S.J.: ‘Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier’, Polymers, 2011, 3, (3), pp. 13771397.
    37. 37)
      • 37. Goodman, C.M., McCusker, C.D., Yilmaz, T., et al: ‘Toxicity of gold nanoparticles functionalized with cationic and anionic side chains’, Bioconjug. Chem., 2004, 15, (4), pp. 897900.
    38. 38)
      • 38. Lee, S.S., Lee, Y.B., Oh, I.J.: ‘Cellular uptake of poly (DL-lactide-co-glycolide) nanoparticles: effects of drugs and surface characteristics of nanoparticles’, J. Pharm. Invest., 2015, 45, (7), pp. 659667.
    39. 39)
      • 39. Hamed, S.F., Sadek, Z., Edris, A.: ‘Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion’, J. Oleo Sci., 2012, 61, (11), pp. 641648.
    40. 40)
      • 40. Bexiga, M.G., Varela, J.A., Wang, F., et al: ‘Cationic nanoparticles induce caspase 3-, 7-and 9-mediated cytotoxicity in a human astrocytoma cell line’, Nanotoxicology, 2011, 5, (4), pp. 557567.
    41. 41)
      • 41. Mura, S., Hillaireau, H., Nicolas, J., et al: ‘Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells’, Int. J. Nanomed., 2011, 6, pp. 25912605.
    42. 42)
      • 42. Thosar, N., Basak, S., Bahadure, R.N., et al: ‘Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study’, Eur. J. Dent., 2013, 7, (5), pp. S71S77.
    43. 43)
      • 43. Xu, J.S., Li, Y., Cao, X., et al: ‘The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats’, Exp. Ther. Med., 2013, 5, (6), pp. 16671670.
    44. 44)
      • 44. Freires, I.A., Denny, C., Benso, B., et al: ‘Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: a systematic review’, Molecules, 2015, 20, (4), pp. 73297358.
    45. 45)
      • 45. Adil, M., Singh, K., Verma, P.K., et al: ‘Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: an approach to inhibit biofilms’, J. Glob. Antimicrob. Resist., 2014, 2, (4), pp. 286292.

Related content

This is a required field
Please enter a valid email address