access icon free Green synthesis and characterisation of CuNPs: insights into their potential bioactivity

The current investigation involves the green synthesis of copper nanoparticles (CuNPs) from an aqueous plant extract of Moringa oleifera Lam by two methods: (I) time-based approach and (II) heat treatment of aqueous solution. Prepared CuNPs were characterised via Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission EM. The study also reveals the potential bioactivity of the prepared CuNPs. In vitro anti-microbial efficiency of CuNPs was estimated against bacterial and fungal strains by the agar well diffusion method. Anti-oxidant capacity of CuNPs was determined using ferric reducing ability of plasma (FRAP), lipid peroxidation (LPO) and peroxidase assays, while the antiplatelet potential was determined by measuring two haemostatic parameters (PT & APTT assay). The minimum inhibitory concentration was observed at 60 µg/ml against Streptomyces griseus and Aspergillus niger when NPs were prepared by method II. CuNPs prepared by the method I showed higher FRAP and LPO activities, while increased POX activity was found in CuNPs prepared by method II. CuNPs prepared using method I also showed better anti-oxidant and antiplatelet potential. It was observed that M. oleifera-derived CuNPs exhibits strong anti-microbial, anti-oxidant and APTT potential. This indicates potential utilization of green synthesized NPs for various industrial and therapeutic strategies.

Inspec keywords: nanofabrication; cellular biophysics; heat treatment; biomedical materials; Fourier transform infrared spectra; antibacterial activity; microorganisms; copper; molecular biophysics; biochemistry; scanning electron microscopy; X-ray diffraction; nanomedicine; nanoparticles; enzymes

Other keywords: Fourier transform infrared spectroscopy; aqueous solution; aqueous plant; APTT activity; Streptomyces griseus; transmission EM; potential bioactivity; agar well diffusion method; Aspergillus niger; lipid peroxidation; Moringa oleifera Lam; peroxidase assays; time-based approach; X-ray diffraction; ferric reducing ability of plasma; heat treatment; therapeutic strategies; industrial strategies; copper nanoparticles; haemostatic parameters; green synthesis; scanning electron microscopy; bacterial strains; Cu; fungal strains; in vitro antimicrobial efficiency

Subjects: Other methods of nanofabrication; Physical chemistry of biomolecular solutions and condensed states; Infrared and Raman spectra in metals; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Biomedical materials; Cellular biophysics; Nanotechnology applications in biomedicine; Low-dimensional structures: growth, structure and nonelectronic properties

References

    1. 1)
      • 43. Silverstein, R.M., Webster, F.X., Kiemle, D.J., et al: ‘Spectrometric identification of organic compounds’ (John Wiley & Sons, USA, 2014).
    2. 2)
      • 32. Perez, C., Pauli, M., Bazerque, P.: ‘An antibiotic assay by the agar well diffusion method’, Acta Biol. Med. Exp., 1990, 15, (1), pp. 113115.
    3. 3)
      • 20. Guevara, A.P., Vargas, C., Sakurai, H., et al: ‘An antitumor promoter from Moringa oleifera Lam’, Mutat. Res., 1999, 440, (2), pp. 181188.
    4. 4)
      • 61. Ross, R.: ‘Atherosclerosis – an inflammatory disease’, N. Engl. J. Med., 1999, 340, (2), pp. 115126.
    5. 5)
      • 11. Hussain, M., Raja, N.I., Iqbal, M., et al: ‘In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesized zinc and copper nanoparticles’, IET Nanobiotechnol., 2017, 11, (7), pp. 790796.
    6. 6)
      • 58. Xia, T., Kovochich, M., Brant, J., et al: ‘Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm’, Nano Lett., 2006, 6, (8), pp. 17941807.
    7. 7)
      • 27. Beyth, N., Houri-Haddad, Y., Domb, A., et al: ‘Alternative antimicrobial approach: nano-antimicrobial materials’, Evid. Based Complement. Altern. Med., 2015, 2015, Article ID 246012, 16 pages.
    8. 8)
      • 15. Verma, S., Banerji, R., Misra, G., et al: ‘Nutritional value of Moringa’, Curr. Sci., 1976, 45, (21), pp. 769770.
    9. 9)
      • 16. Hartwell, J.L.: ‘Plants used against cancer. A survey’, Lloydia, 1967, 30, pp. 379436.
    10. 10)
      • 53. Barclay, L.R.C., Edwards, C., Vinqvist, M.R.: ‘Media effects on antioxidant activities of phenols and catechols’, J. Am. Chem. Soc., 1999, 121, (26), pp. 62266231.
    11. 11)
      • 51. Seil, J.T., Webster, T.J.: ‘Antimicrobial applications of nanotechnology: methods and literature’, Int. J. Nanomed., 2012, 7, pp. 27672781.
    12. 12)
      • 2. Nagajyothi, P., Lee, K.: ‘Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities’, J. Nanomater., 2011, 2011, p. 49.
    13. 13)
      • 54. Rice-Evans, C.A., Miller, N.J., Paganga, G.: ‘Structure-antioxidant activity relationships of flavonoids and phenolic acids’, Free Radic. Biol. Med., 1996, 20, (7), pp. 933956.
    14. 14)
      • 48. Walkey, C.D., Chan, W.C.: ‘Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment’, Chem. Soc. Rev., 2012, 41, (7), pp. 27802799.
    15. 15)
      • 63. Adams, M.R., Kinlay, S., Blake, G.J., et al: ‘Atherogenic lipids and endothelial dysfunction: mechanisms in the genesis of ischemic syndromes’, Annu. Rev. Med., 2000, 51, (1), pp. 149167.
    16. 16)
      • 17. Sulaiman, M.R., Zakaria, Z.A., Bujarimin, A., et al: ‘Evaluation of Moringa oleifera aqueous extract for antinociceptive and anti-inflammatory activities in animal models’, Pharm. Biol., 2008, 46, (12), pp. 838845.
    17. 17)
      • 47. Allafchian, A.R., Jalali, S.A.H.: ‘Synthesis, characterization and antibacterial effect of poly (acrylonitrile/maleic acid)–silver nanocomposite’, J. Taiwan Inst. Chem. Eng., 2015, 57, pp. 154159.
    18. 18)
      • 18. Agrawal, B., Mehta, A.: ‘Antiasthmatic activity of Moringa oleifera Lam: a clinical study’, Indian J. Pharmacol., 2008, 40, (1), pp. 2831.
    19. 19)
      • 1. Huang, J., Li, Q., Sun, D., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, (10), p. 105104.
    20. 20)
      • 31. Heinlaan, M., Ivask, A., Blinova, I., et al: ‘Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus’, Chemosphere, 2008, 71, (7), pp. 13081316.
    21. 21)
      • 23. Jayasri, M., Mathew, L., Radha, A.: ‘A report on the antioxidant activity of leaves and rhizomes of Costus pictus D. Don’, Int. J. Integr. Biol., 2009, 5, (1), pp. 2026.
    22. 22)
      • 25. Millogo-Kone, H., Lompo, M., Kini, F., et al: ‘Evaluation of flavonoids and total phenolic contents of stem bark and leaves of Parkia biglobosa (Jacq.) Benth. (Mimosaceae)-free radical scavenging and antimicrobial activities’, Res. J. Med. Sci., 2009, 3, (2), pp. 7074.
    23. 23)
      • 45. Kumari, A., Guliani, A., Singla, R., et al: ‘Silver nanoparticles synthesised using plant extracts show strong antibacterial activity’, IET Nanobiotechnol., 2014, 9, (3), pp. 142152.
    24. 24)
      • 40. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346356.
    25. 25)
      • 49. Xie, Y., He, Y., Irwin, P.L., et al: ‘Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni’, Appl. Environ. Microbiol., 2011, 77, (7), pp. 23252331.
    26. 26)
      • 30. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., et al: ‘Strain specificity in antimicrobial activity of silver and copper nanoparticles’, Acta Biomat., 2008, 4, (3), pp. 707716.
    27. 27)
      • 21. Vyas, S., Kachhwaha, S., Kothari, S.: ‘Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam’, Pharmacogn. J., 2015, 7, (1), pp. 4451.
    28. 28)
      • 12. Sukhwal, A., Jain, D., Joshi, A., et al: ‘Biosynthesised silver nanoparticles using aqueous leaf extract of Tagetes patula L. and evaluation of their antifungal activity against phytopathogenic fungi’, IET Nanobiotechnol., 2016, 11, (5), pp. 531537.
    29. 29)
      • 64. Cai, H., Harrison, D.G.: ‘Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress’, Circ. Res., 2000, 87, (10), pp. 840844.
    30. 30)
      • 35. Hodges, D.M., DeLong, J.M., Forney, C.F., et al: ‘Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds’, Planta, 1999, 207, (4), pp. 604611.
    31. 31)
      • 34. Varga, I.S., Matkovics, B.: ‘Comparative study of plasma antioxidant status in normal and pathological cases’, Pathophysiology, 1998, 5, p. 77.
    32. 32)
      • 56. Sharpe, E., Andreescu, D., Andreescu, S.: ‘Artificial nanoparticle antioxidants’, in Oxidative Stress: diagnostics, prevention, and therapy (ACS Symposium Series, 1083, Chapter 8, 2011), pp. 235253.
    33. 33)
      • 8. Prasad, T., Elumalai, E.: ‘Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity’, Asian Pac. J. Trop. Biomed., 2011, 1, (6), pp. 439442.
    34. 34)
      • 22. Shukla, R.K., Painuly, D., Porval, A., et al: ‘Proximate analysis, nutritional value, phytochemical evaluation, and biological activity of Litchi chinensis Sonn. leaves’, J. Herbs Spices Med Plants, 2014, 20, (2), pp. 196208.
    35. 35)
      • 6. Bhople, S., Gaikwad, S., Deshmukh, S., et al: ‘Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples’, IET Nanobiotechnol., 2016, 10, (6), pp. 389394.
    36. 36)
      • 14. Patel, P., Agarwal, P., Kanawaria, S., et al: ‘Plant-based synthesis of silver nanoparticles and their characterization’, in Nanotechnology and Plant Sciences (Springer International Publishing, 2015), pp. 271288.
    37. 37)
      • 44. Behera, A., Swain, S.K., Mishra, S.C., et al: ‘Characterisation of Nanoparticle through Sem, FTIR, XRD & DSC’, National Conference on Processing and Characterization of Materials (NCPCM-2011), Department of Metallurgical & Materials Engineering, National Institute of Technology, Rourkela, December 2011.
    38. 38)
      • 41. Lee, H.-J., Lee, G., Jang, N.R., et al: ‘Biological synthesis of copper nanoparticles using plant extract’, Nanotechnology, 2011, 1, (1), pp. 371374.
    39. 39)
      • 36. Perlick, E., Bergmann, A.: ‘Gerinnungslaboratorium in Klinik Und Praxis’ (Leipzig, 1960), pp. 6566.
    40. 40)
      • 10. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    41. 41)
      • 50. Cioffi, N., Rai, M.: ‘Nano-antimicrobials: progress and prospects’ (Springer-Verlag, Berlin, Heidelberg, 1st edn., 2012).
    42. 42)
      • 7. Dhillon, G.S., Brar, S.K., Kaur, S., et al: ‘Green approach for nanoparticle biosynthesis by fungi: current trends and applications’, Crit. Rev. Biotechnol., 2012, 32, (1), pp. 4973.
    43. 43)
      • 65. Nie, H., Meng, L.-Z., Zhang, H., et al: ‘Analysis of anti-platelet aggregation components of Rhizoma Zingiberis using chicken thrombocyte extract and high performance liquid chromatography’, Chin. Med. J. (Engl. Ed.), 2008, 121, (13), pp. 12261229.
    44. 44)
      • 42. Jussila, H., Yang, H., Granqvist, N., et al: ‘Surface plasmon resonance for characterization of large-area atomic-layer graphene film’, Optica, 2016, 3, (2), pp. 151158.
    45. 45)
      • 57. Chatterjee, S., Agarwal, S.: ‘Liposomes as membrane model for study of lipid peroxidation’, Free Radic. Biol. Med., 1988, 4, (1), pp. 5172.
    46. 46)
      • 24. Shukla, A., Vats, S., Shukla, R.K., et al: ‘Phytochemical evaluation, proximate analysis and biological activity of Reinwardtia indica Dum. leaves’, Int. J. Pharmacogn. Phytochem. Res., 2016, 8, (5), pp. 750755.
    47. 47)
      • 39. Mirgorod, Y.A., Borodina, V.: ‘Preparation and bactericidal properties of silver nanoparticles in aqueous tea leaf extract’, Inorg. Mater., 2013, 49, (10), pp. 980983.
    48. 48)
      • 37. Laaksonen, K., Suomela, S., Puisto, S.R., et al: ‘Influence of high-refractive-index oxide coating on optical properties of metal nanoparticles’, J. Opt. Soc. Am. B, 2013, 30, (2), pp. 338348.
    49. 49)
      • 9. Castro, L., Blázquez, M.L., Muñoz, J.A., et al: ‘Biological synthesis of metallic nanoparticles using algae’, IET Nanobiotechnol., 2013, 7, (3), pp. 109116.
    50. 50)
      • 52. Naraginti, S., Sivakumar, A.: ‘Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2014, 128, pp. 357362.
    51. 51)
      • 55. Tirzitis, G., Bartosz, G.: ‘Determination of antiradical and antioxidant activity: basic principles and new insights’, Acta Biochim. Pol., 2010, 57, (1), pp. 139142.
    52. 52)
      • 26. Mahapatra, O., Bhagat, M., Gopalakrishnan, C., et al: ‘Ultrafine dispersed CuO nanoparticles and their antibacterial activity’, J. Exp. Nanosci., 2008, 3, (3), pp. 185193.
    53. 53)
      • 46. Kumar, V., Yadav, S.: ‘Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.’, IET Nanobiotechnol., 2012, 6, (1), pp. 18.
    54. 54)
      • 3. Pugazhenthiran, N., Anandan, S., Kathiravan, G., et al: ‘Microbial synthesis of silver nanoparticles by Bacillus sp.’, J. Nanopart. Res., 2009, 11, (7), p. 1811.
    55. 55)
      • 66. Ahmed, S., Ahmad, M., Swami, B.L., et al: ‘Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract’, J. Radiat. Res. Appl. Sci., 2016, 9, (1), pp. 17.
    56. 56)
      • 29. Jones, N., Ray, B., Ranjit, K.T., et al: ‘Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms’, FEMS Microbiol. Lett., 2008, 279, (1), pp. 7176.
    57. 57)
      • 19. Fakurazi, S., Nanthini, U., Ithnin, H.: ‘Hepatoprotective and antioxidant action of Moringa oleifera Lam. against acetaminophen induced hepatoxicity in rats’, Int. J. Pharmacol., 2008, 4, (4), pp. 270275.
    58. 58)
      • 4. Salaheldin, H.I., Almalki, M.H., Osman, G.E.: ‘Green synthesis of silver nanoparticles using bovine skin gelatin and its antibacterial effect on clinical bacterial isolates’, IET Nanobiotechnol., 2016, 11, (4), pp. 420425.
    59. 59)
      • 13. Khatami, M., Heli, H., Jahani, P.M., et al: ‘Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity’, IET Nanobiotechnol., 2017, 11, (6), pp. 709713.
    60. 60)
      • 59. Jackson, S.P., Nesbitt, W.S., Kulkarni, S.: ‘Signaling events underlying thrombus formation’, J. Thromb. Hemost., 2003, 1, (7), pp. 16021612.
    61. 61)
      • 67. Shivashankar, M., Sisodia, G.: ‘Biosynthesis of silver nanoparticles obtained from plant extracts of Moringa oleifera’, Int. J. Life. Sci. Biotechnol. Pharma. Res., 2012, 1, pp. 183185.
    62. 62)
      • 28. Tran, N., Mir, A., Mallik, D., et al: ‘Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus’, Int. J. Nanomed., 2010, 5, pp. 277283.
    63. 63)
      • 33. Shahidi Bonjar, G., Aghighi, S., Karimi Nik, A.: ‘Antibacterial and antifungal survey in plants used in indigenous herbal-medicine of South East regions of Iran’, J. Biol. Sci., 2004, 4, (3), pp. 405412.
    64. 64)
      • 5. Wypij, M., Golinska, P., Dahm, H., et al: ‘Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria’, IET Nanobiotechnol., 2016, 11, (3), pp. 336342.
    65. 65)
      • 62. Freedman, J.E., Keaney, J.F.: ‘[7] Nitric oxide and superoxide detection in human platelets’, Meth. Enzymol., 1999, 301, pp. 6170.
    66. 66)
      • 68. Thirunavukkarasu, C., Archana, R., Sharmila, S., et al: ‘Preparation and characterization of ZnO nanoparticles using Moringa oleifera extract by green synthesis method’, Asian J. Phytomed. Clin. Res., 2016, 4, (3), pp. 121132.
    67. 67)
      • 60. Ross, R.: ‘The pathogenesis of atherosclerosis: a perspective for the 1990s’, Nature, 1993, 362, (6423), pp. 801809.
    68. 68)
      • 38. Peña-Rodríguez, O., Pal, U.: ‘effects of surface oxidation on the linear optical properties of Cu nanoparticles’, J. Opt. Soc. Am. B, 2011, 28, (11), pp. 27352739.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0138
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0138
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading