http://iet.metastore.ingenta.com
1887

Biosynthesis of Ag3PO4 nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium

Biosynthesis of Ag3PO4 nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Silver phosphate nanoparticles were biologically synthesised, for the first time, using a dilute silver nitrate solution as the silver ion supplier, and without any source of phosphate ion. The applied bacterium was Sporosarcina pasteurii formerly known as Bacillus pasteurii which is capable of solubilising phosphate from soils. It was speculated that the microbe accumulated phosphate from the organic source during the growth period, and then released it to deionised water. According to the transmission electron microscopy images and X-ray diffraction results, the produced nanoparticles were around 20 nm in size and identified as silver phosphate nanocrystals. The outcomes were also approved by energy-dispersive X-ray analysis, thermogravimetric and differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy analysis. Finally, the antibacterial effect of the obtained nanoparticles was verified by testing them against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The activity of silver phosphate nanoparticles against gram-negative strains was better than the gram positives. It should be mentioned that the concentrations of 500 and 1000 mg/l were found to be strongly inhibitory for all of the strains.

References

    1. 1)
      • 1. Kumar, A., Prakash, A., Johri, B.: ‘Bacillus as PGPR in crop ecosystem’, in Maheshwari, Dinesh K. (Ed.): Bacteria in agrobiology: crop ecosystems (Springer, Berlin Heidelberg, 2011), pp. 3759.
    2. 2)
      • 2. Anand, K., Kumari, B., Mallick, M.: ‘Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers’, Int. J. Pharm. Pharm. Sci., 2016, 8, (2), pp. 3740.
    3. 3)
      • 3. Mammadov, K.: ‘Dephosphorization of iron ore through bioleaching’. Master thesis, Universidade Federal de Santa Catarina, 2016.
    4. 4)
      • 4. Huang, T., Gong, W.-Q., Hu, C., et al: ‘Research on bioleaching of phosphorus from hematite with mixed bacteria’, J. Wuhan Univ. Technol., 2010, 13.
    5. 5)
      • 5. Chi, R.-A., Xiao, C.-Q., Huang, X.-H., et al: ‘Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans’, J. Cent. South Univ. Technol., 2007, 14, (2), pp. 170175.
    6. 6)
      • 6. Beveridge, T., Meloche, J., Fyfe, W., et al: ‘Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments’, Appl. Environ. Microbiol., 1983, 45, (3), pp. 10941108.
    7. 7)
      • 7. Lateef, A., Adelere, I., Gueguim-Kana, E., et al: ‘Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13’, Int. Nano Lett., 2014, 5, (1), pp. 2935.
    8. 8)
      • 8. Velmurugan, P., Iydroose, M., Mohideen, M.H.A.K., et al: ‘Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity’, Bioprocess Biosyst. Eng., 2014, 37, (8), pp. 15271534.
    9. 9)
      • 9. El-Batal, A., Amin, M., Shehata, M.M., et al: ‘Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity’, World Appl. Sci. J., 2013, 22, (1), pp. 116.
    10. 10)
      • 10. Javani, S., Marín, I., Amils, R., et al: ‘Four psychrophilic bacteria from Antarctica extracellularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding antimicrobial activity’, Colloids Surf. A: Physicochem. Eng. Asp., 2015, 483, pp. 6069.
    11. 11)
      • 11. Vithiya, K., Kumar, R., Sen, S.: ‘Bacillus sp. mediated extracellular synthesis of silver nanoparticles’, Int. J. Pharm. Pharm. Sci., 2014, 6, pp. 525527.
    12. 12)
      • 12. Priyadarshini, S., Gopinath, V., Priyadharsshini, N.M., et al: ‘Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application’, Colloids Surf. B Biointerfaces, 2013, 102, pp. 232237.
    13. 13)
      • 13. Sagar, G., Ashok, B.: ‘Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens’, Eur. J. Exp. Biol., 2012, 2, (5), pp. 16541658.
    14. 14)
      • 14. Wei, X., Luo, M., Li, W., et al: ‘Synthesis of silver nanoparticles by solar irradiation of cell-free bacillus amyloliquefaciens extracts and AgNO3’, Bioresour. Technol., 2012, 103, (1), pp. 273278.
    15. 15)
      • 15. Dhand, V., Soumya, L., Bharadwaj, S., et al: ‘Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity’, Mater. Sci. Eng.: C, 2016, 58, pp. 3643.
    16. 16)
      • 16. Meng, J., Zhao, S., Doyle, M.P., et al: ‘Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans’, J. Food Prot., 1998, 61, (11), pp. 15111514.
    17. 17)
      • 17. Bi, Y., Ouyang, S., Umezawa, N., et al: ‘Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties’, J. Am. Chem. Soc., 2011, 133, (17), pp. 64906492.
    18. 18)
      • 18. Umezawa, N., Shuxin, O., Ye, J.: ‘Theoretical study of high photocatalytic performance of Ag3PO4’, Phys. Rev. B, 2011, 83, (3), pp. 18.
    19. 19)
      • 19. Kumar, S., Surendar, T., Shanker, V.: ‘Template-free and eco-friendly synthesis of hierarchical Ag3PO4 microcrystals with sharp corners and edges for enhanced photocatalytic activity under visible light’, Mater. Lett., 2014, 123, pp. 172175.
    20. 20)
      • 20. Chen, X.-j., Dai, Y.-z., Wang, X.-y., et al: ‘Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation’, J. Hazard. Mater., 2015, 292, pp. 918.
    21. 21)
      • 21. Wu, A., Tian, C., Chang, W., et al: ‘Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties’, Mater. Res. Bull., 2013, 48, (9), pp. 30433048.
    22. 22)
      • 22. Chudobova, D., Cihalova, K., Dostalova, S., et al: ‘Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection’, FEMS Microbiol. Lett., 2014, 351, (2), pp. 195201.
    23. 23)
      • 23. Dinh, C.-T., Nguyen, T.-D., Kleitz, F., et al: ‘Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity’, Chem. Commun., 2011, 47, (27), pp. 77977799.
    24. 24)
      • 24. Vu, T.A., Dao, C.D., Hoang, T.T., et al: ‘Study on synthesis and photocatalytic activity of novel visible light sensitive photocatalyst Ag3PO4’, Int. J. Nanotechnol., 2013, 10, (3-4), pp. 187196.
    25. 25)
      • 25. Castro-Longoria, E., Vilchis-Nestor, A.R., Avalos-Borja, M.: ‘Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa’, Colloids Surf. B Biointerfaces, 2011, 83, (1), pp. 4248.
    26. 26)
      • 26. Elbeshehy, E.K., Elazzazy, A.M., Aggelis, G.: ‘Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens’, Front. Microbiol., 2015, 6.
    27. 27)
      • 27. Gogoi, N., Babu, P.J., Mahanta, C., et al:Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbor-tristis and in vitro investigation of their antibacterial and cytotoxic activities’, Mater. Sci. Eng.: C, 2015, 46, pp. 463469.
    28. 28)
      • 28. Hyllested, J.ae., Palanco, M.E., Hagen, N., et al:Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents’, Beilstein J. Nanotechnol., 2015, 6, (1), pp. 293299.
    29. 29)
      • 29. Jo, J.H., Singh, P., Kim, Y.J., et al: ‘Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles’, Artif. Cells, Nanomed. Biotechnol., 2015, 44, (6), pp. 15761581.
    30. 30)
      • 30. Waghmare, S.R., Mulla, M.N., Marathe, S.R., et al: ‘Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms’, 3 Biotech, 2015, 5, (1), pp. 3338.
    31. 31)
      • 31. Singh, B., Satyanarayana, T.: ‘Microbial phytases in phosphorus acquisition and plant growth promotion’, Physiol. Mol. Biol. Plants, 2011, 17, (2), pp. 93103.
    32. 32)
      • 32. Babalola, O.O.: ‘Beneficial bacteria of agricultural importance’, Biotechnol. Lett., 2010, 32, (11), pp. 15591570.
    33. 33)
      • 33. Hayat, R., Ali, S., Amara, U., et al: ‘Soil beneficial bacteria and their role in plant growth promotion: a review’, Ann. Microbiol., 2010, 60, (4), pp. 579598.
    34. 34)
      • 34. Rodríguez, H., Fraga, R.: ‘Phosphate solubilizing bacteria and their role in plant growth promotion’, Biotechnol. Adv., 1999, 17, (4), pp. 319339.
    35. 35)
      • 35. Nagarajan, A.J., Irusappan, S., Amarnath, G., et al: ‘Expeditious synthesis of silver nanoparticles by a novel strain Sporosarcina pasteurii SRMNP1 and patrocladogram analysis for exploration of its closely related species’, Int. J. Sci. Res., 2014, 3, (2), pp. 6365.
    36. 36)
      • 36. Tao, G.-C., Tian, S.-J., Cai, M.-Y., et al: ‘Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils’, Pedosphere, 2008, 18, (4), pp. 515523.
    37. 37)
      • 37. Golub, E.E., Boesze-Battaglia, K.: ‘The role of alkaline phosphatase in mineralization’, Curr. Opin. Orthopaed., 2007, 18, (5), pp. 444448.
    38. 38)
      • 38. Li, X.-Z., Wu, K.-L., Dong, C., et al: ‘Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation’, Mater. Lett., 2014, 130, pp. 97100.
    39. 39)
      • 39. Williamson, G., Hall, W.: ‘X-ray line broadening from filed aluminium and wolfram’, Acta Metall., 1953, 1, (1), pp. 2231.
    40. 40)
      • 40. Hosseini, M.R., Sarvi, M.N.: ‘Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles’, Mater. Sci. Semicond. Process., 2015, 40, pp. 293301.
    41. 41)
      • 41. Vala, A., Chudasama, B., Patel, R.: ‘Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger’, Micro Nano Lett., 2012, 7, (8), pp. 859862.
    42. 42)
      • 42. Nithya, R., Ragunathan, R.: ‘Synthesis of silver nanoparticles using a probiotic microbe and its antibacterial effect against multidrug resistant bacteria’, Afr. J. Biotechnol., 2012, 11, (49), pp. 1101311021.
    43. 43)
      • 43. Chen, G., Yi, B., Zeng, G., et al: ‘Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium’, Colloids Surf. B: Biointerfaces, 2014, 117, pp. 199205.
    44. 44)
      • 44. Sankhla, A., Sharma, R., Yadav, R.S., et al: ‘Biosynthesis and characterization of cadmium sulfide nanoparticles – an emphasis of zeta potential behavior due to capping’, Mater. Chem. Phys., 2016, 170, pp. 4451.
    45. 45)
      • 45. Uvdal, K., Vikinge, T.: ‘Chemisorption of the dipeptide Arg-Cys on a gold surface and the selectivity of G-protein adsorption’, Langmuir, 2001, 17, (6), pp. 20082012.
    46. 46)
      • 46. Moreau, J.W., Weber, P.K., Martin, M.C., et al: ‘Extracellular proteins limit the dispersal of biogenic nanoparticles’, Science, 2007, 316, (5831), pp. 16001603.
    47. 47)
      • 47. Banu, A., Rathod, V., Ranganath, E.: ‘Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum Β-lactamase producing (ESBL) strains of enterobacteriaceae’, Mater. Res. Bull., 2011, 46, (9), pp. 14171423.
    48. 48)
      • 48. Nguyen, T.-D., Dinh, C.-T., Do, T.-O.: ‘Monodisperse samarium and cerium orthovanadate nanocrystals and metal oxidation states on the nanocrystal surface’, Langmuir, 2009, 25, (18), pp. 1114211148.
    49. 49)
      • 49. Hosseini, M., Schaffie, M., Pazouki, M., et al: ‘A novel electrically enhanced biosynthesis of copper sulfide nanoparticles’, Mater. Sci. Semicond. Process., 2013, 16, (2), pp. 250255.
    50. 50)
      • 50. Shrivastava, S., Bera, T., Roy, A., et al: ‘Characterization of enhanced antibacterial effects of novel silver nanoparticles’, Nanotechnology, 2007, 18, (22), pp. 19.
    51. 51)
      • 51. Allafchian, A., Mirahmadi-Zare, S., Jalali, S., et al: ‘Green synthesis of silver nanoparticles using phlomis’, J. Nanostruct. Chem., 2016, 6, (2), pp. 129135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0121
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address