http://iet.metastore.ingenta.com
1887

Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review

Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Titanium dioxide (TiO2) has been vastly used commercially, especially as white pigment in paints, colorants, plastics, coatings, cosmetics. Certain industrial uses TiO2 in diameter <100 nm. There are three common exposure routes for TiO2: (i) inhalation exposure, (ii) exposure via gastrointestinal tract, (iii) dermal exposure. Inhalation and gastrointestinal exposure appear to be the most probable ways of exposure, although nanoparticle (NP) penetration is limited. However, the penetration rate may increase substantially when the tissue is impaired. When TiO2 NPs migrate into the circulatory system, they can be distributed into all tissues including brain. In brain, TiO2 lead to oxidative stress mediated by the microglia phagocytic cells which respond to TiO2 NPs by the production and release of superoxide radicals that convert to multiple reactive oxygen species (ROS). The ROS production may also cause the damage of blood–brain barrier which then becomes more permeable for NPs. Moreover, several studies have showed neuron degradation and the impairment of spatial recognition memory and learning abilities in laboratory rodent exposed to TiO2 NPs.

References

    1. 1)
      • 1. Popov, A.P., Priezzhev, A.V., Lademann, J., et al: ‘TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens’, J. Phys. D Appl. Phys., 2005, 38, (15), pp. 25642570.
    2. 2)
      • 2. Shah, S.N.A., Shah, Z., Hussain, M., et al: ‘Hazardous effects of titanium dioxide nanoparticles in ecosystem’, Bioinorganic Chem. Appl., 2017, 4101735.
    3. 3)
      • 3. Kreyling, W.G., Semmler-Behnke, M., Takenaka, S., et al: ‘Differences in the biokinetics of inhaled nano- versus micrometer-sized particles’, Acc. Chem. Res., 2013, 46, (3), pp. 714722.
    4. 4)
      • 4. Grassian, V.H., O'Shaughnessy, P.T., Adamcakova-Dodd, A., et al: ‘Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 Nm’, Environ. Health Perspect., 2007, 115, (3), pp. 397402.
    5. 5)
      • 5. Yu, K.N., Sung, J.H., Lee, S., et al: ‘Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice’, Food Chem. Toxicol., 2015, 85, pp. 106113.
    6. 6)
      • 6. Bermudez, E., Mangum, J.B., Asgharian, B., et al: ‘Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles’, Toxicol. Sci., 2002, 70, (1), pp. 8697.
    7. 7)
      • 7. Bermudez, E., Mangum, J.B., Wong, B.A., et al: ‘Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles’, Toxicol. Sci., 2004, 77, (2), pp. 347357.
    8. 8)
      • 8. Oberdorster, G., Ferin, J., Soderholm, S., et al: ‘Increased pulmonary toxicity of inhaled ultrafine particles - due to lung overload alone’, Inhaled Particles VII, 1994, 38, (1), pp. 295302.
    9. 9)
      • 9. Nemmar, A., Hoet, P.H.M., Vanquickenborne, B., et al: ‘Passage of inhaled particles into the blood circulation in humans’, Circulation, 2002, 105, (4), pp. 411414.
    10. 10)
      • 10. Wiebert, P., Sanchez-Crespo, A., Seitz, J., et al: ‘Negligible clearance of ultrafine particles retained in healthy and affected human lungs’, Eur. Respir. J., 2006, 28, (2), pp. 286290.
    11. 11)
      • 11. Geiser, M., Rothen-Rutishauser, B., Kapp, N., et al: ‘Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells’, Environ. Health Perspect., 2005, 113, (11), pp. 15551560.
    12. 12)
      • 12. Muhlfeld, C., Geiser, M., Kapp, N., et al: ‘Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the ‘relative deposition index’: evidence for clearance through microvasculature’, Part Fibre Toxicol., 2007, 4, p. 7.
    13. 13)
      • 13. Geiser, M.: ‘Update on macrophage clearance of inhaled micro- and nanoparticles’, J. Aerosol. Med. Pulm. Drug Deliv., 2010, 23, (4), pp. 207217.
    14. 14)
      • 14. Li, Y., Li, J., Yin, J., et al: ‘Systematic influence induced by 3 Nm titanium dioxide following intratracheal instillation of mice’, J. Nanosci. Nanotechnol., 2010, 10, (12), pp. 85448549.
    15. 15)
      • 15. Eydner, M., Schaudien, D., Creutzenberg, O., et al: ‘Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index’, Inhal. Toxicol., 2012, 24, (9), pp. 557569.
    16. 16)
      • 16. Liu, H., Ma, L., Zhao, J., et al: ‘Biochemical toxicity of nano-anatase TiO2 particles in mice’, Biol. Trace Elem. Res., 2009, 129, (1–3), pp. 170180.
    17. 17)
      • 17. Chen, J.Y., Dong, X., Zhao, J., et al: ‘In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection’, J. Appl. Toxicol., 2009, 29, (4), pp. 330337.
    18. 18)
      • 18. Wang, J., Liu, Y., Jiao, F., et al: ‘Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles’, Toxicology, 2008, 254, (1–2), pp. 8290.
    19. 19)
      • 19. Wang, J., Chen, C., Liu, Y., et al: ‘Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases’, Toxicol. Lett., 2008, 183, (1–3), pp. 7280.
    20. 20)
      • 20. Yah, C.S., Simate, G.S., Iyuke, S.E.: ‘Nanoparticles toxicity and their routes of exposures’, Pak. J. Pharm. Sci., 2012, 25, (2), pp. 477491.
    21. 21)
      • 21. Martirosyan, A., Polet, M., Bazes, A., et al: ‘Food nanoparticles and intestinal inflammation: a real risk?’. InTech, 2012, Inflammatory Bowel Disease edition.
    22. 22)
      • 22. Jani, P.U., McCarthy, D.E., Florence, A.T.: ‘Titanium dioxide (rutile) particle uptake from the Rat Gi tract and translocation to systemic organs after oral administration’, Int. J. Pharm., 1994, 105, (2), pp. 157168.
    23. 23)
      • 23. Wang, J., Zhou, G., Chen, C., et al: ‘Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration’, Toxicol. Lett., 2007, 168, (2), pp. 176185.
    24. 24)
      • 24. Janer, G., Mas del Molino, E., Fernandez-Rosas, E., et al: ‘Cell uptake and oral absorption of titanium dioxide nanoparticles’, Toxicol. Lett., 2014, 228, (2), pp. 103110.
    25. 25)
      • 25. MacNicoll, A., Kelly, M., Aksoy, H., et al: ‘A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake’, J. Nanoparticle Res., 2015, 17, (2).
    26. 26)
      • 26. Tassinari, R., Cubadda, F., Moracci, G., et al: ‘Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen’, Nanotoxicology, 2014, 8, (6), pp. 654662.
    27. 27)
      • 27. Mohammadipour, A., Fazel, A., Haghir, H., et al: ‘Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring’, Environ. Toxicol. Pharmacol., 2014, 37, (2), pp. 617625.
    28. 28)
      • 28. Powell, J.J., Faria, N., Thomas-McKay, E., et al: ‘Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract’, J. Autoimmunity, 2010, 34, (3), pp. J226J233.
    29. 29)
      • 29. Senzui, M., Tamura, T., Miura, K., et al: ‘Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro’, J. Toxicol. Sci., 2010, 35, (1), pp. 107113.
    30. 30)
      • 30. Tan, M.H., Commens, C.A., Burnett, L., et al: ‘A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens’, Australas J. Dermatol., 1996, 37, (4), pp. 185187.
    31. 31)
      • 31. Lademann, J., Weigmann, H., Rickmeyer, C., et al: ‘Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice’, Skin Pharmacol. Appl. Skin Physiol., 1999, 12, (5), pp. 247256.
    32. 32)
      • 32. Newman, M.D., Stotland, M., Ellis, J.I.: ‘The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens’, J. Am. Acad. Dermatol., 2009, 61, (4), pp. 685692.
    33. 33)
      • 33. Sadrieh, N., Wokovich, A.M., Gopee, N.V., et al: ‘Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles’, Toxicol. Sci., 2010, 115, (1), pp. 156166.
    34. 34)
      • 34. Bennat, C., Muller-Goymann, C.C.: ‘Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter’, Int. J. Cosmet. Sci., 2000, 22, (4), pp. 271283.
    35. 35)
      • 35. Wu, J., Liu, W., Xue, C., et al: ‘Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure’, Toxicol. Lett., 2009, 191, (1), pp. 18.
    36. 36)
      • 36. Liu, X., Sui, B., Sun, J.: ‘Size-and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier’, J. Mater. Chem. B, 2017, 5, (48), pp. 95589570.
    37. 37)
      • 37. Brun, E., Carriere, M., Mabondzo, A.: ‘In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles’, Biomaterials, 2012, 33, (3), pp. 886896.
    38. 38)
      • 38. Chen, I.C., Hsiao, I.L., Lin, H.C., et al: ‘Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability’, Environ. Toxicol. Pharmacol., 2016, 47, pp. 108118.
    39. 39)
      • 39. Disdier, C., Chalansonnet, M., Gagnaire, F., et al: ‘Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-Aerosol in aging rats’, Sci. Rep., 2017, 7, (1), p. 12196.
    40. 40)
      • 40. Allouni, Z.E., Hol, P.J., Cauqui, M.A., et al: ‘Role of physicochemical characteristics in the uptake of TiO2 nanoparticles by fibroblasts’, Toxicol. In Vitro, 2012, 26, (3), pp. 469479.
    41. 41)
      • 41. Andersson-Willman, B., Gehrmann, U., Cansu, Z., et al: ‘Effects of subtoxic concentrations of TiO2 and Zno nanoparticles on human lymphocytes, dendritic cells and exosome production’, Toxicol. Appl. Pharmacol., 2012, 264, (1), pp. 94103.
    42. 42)
      • 42. Halamoda Kenzaoui, B., Chapuis Bernasconi, C., Guney-Ayra, S., et al: ‘Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells’, Biochem. J., 2012, 441, (3), pp. 813821.
    43. 43)
      • 43. Wang, Y., Aker, W.G., Hwang, H.M., et al: ‘A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human Hepg2 cells’, Sci. Total Environ., 2011, 409, (22), pp. 47534762.
    44. 44)
      • 44. Long, T.C., Tajuba, J., Sama, P., et al: ‘Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro’, Environ. Health Perspect., 2007, 115, (11), pp. 16311637.
    45. 45)
      • 45. Long, T.C., Saleh, N., Tilton, R.D., et al: ‘Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (Bv2): implications for nanoparticle neurotoxicity’, Environ. Sci. Technol., 2006, 40, (14), pp. 43464352.
    46. 46)
      • 46. Rothen-Rutishauser, B.M., Schurch, S., Haenni, B., et al: ‘Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques’, Environ. Sci. Technol., 2006, 40, (14), pp. 43534359.
    47. 47)
      • 47. Takeda, K., Suzuki, K.I., Ishihara, A., et al: ‘Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems’, J. Health Sci., 2009, 55, (1), pp. 95102.
    48. 48)
      • 48. Afaq, F., Abidi, P., Matin, R., et al: ‘Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide’, J. Appl. Toxicol., 1998, 18, (5), pp. 307312.
    49. 49)
      • 49. Gurr, J.R., Wang, A.S., Chen, C.H., et al: ‘Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells’, Toxicology, 2005, 213, (1–2), pp. 6673.
    50. 50)
      • 50. Sayes, C.M., Wahi, R., Kurian, P.A., et al: ‘Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells’, Toxicolog. Sci., 2006, 92, (1), pp. 174185.
    51. 51)
      • 51. Wang, J.J., Sanderson, B.J., Wang, H.: ‘Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells’, Mutat. Res., 2007, 628, (2), pp. 99106.
    52. 52)
      • 52. Zhang, Y., Yu, W., Jiang, X., et al: ‘Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine Mc3t3-E1 preosteoblasts’, J. Mater. Sci. Mater. Med., 2011, 22, (8), pp. 19331945.
    53. 53)
      • 53. Lee, K.P., Trochimowicz, H.J., Reinhardt, C.F.: ‘Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years’, Toxicol. Appl. Pharmacol., 1985, 79, (2), pp. 179192.
    54. 54)
      • 54. Warheit, D.B., Brock, W.J., Lee, K.P., et al: ‘Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity’, Toxicol. Sci., 2005, 88, (2), pp. 514524.
    55. 55)
      • 55. Kwon, S., Yang, Y.S., Yang, H.S., et al: ‘Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats’, Toxicol. Res., 2012, 28, (4), pp. 217224.
    56. 56)
      • 56. Iavicoli, I., Leso, V., Bergamaschi, A.: ‘Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies’, J. Nanomater., 2012, 2012.
    57. 57)
      • 57. Grissa, I., Guezguez, S., Ezzi, L., et al: ‘The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain’, Environ. Sci. Pollut. Res., 2016, 23, (20), pp. 2020520213.
    58. 58)
      • 58. Jia, X., Wang, S., Zhou, L., et al: ‘The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice’, Nanoscale Res. Lett., 2017, 12, (1), p. 478.
    59. 59)
      • 59. Ma, L.L., Liu, J., Li, N., et al: ‘Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity’, Biomaterials, 2010, 31, (1), pp. 99105.
    60. 60)
      • 60. Umezawa, M., Tainaka, H., Kawashima, N., et al: ‘Effect of fetal exposure to titanium dioxide nanoparticle on brain development– brain region information’, J. Toxicol. Sci., 2012, 37, (6), pp. 12471252.
    61. 61)
      • 61. Block, M.L., Zecca, L., Hong, J.S.: ‘Microglia-mediated neurotoxicity: uncovering the molecular mechanisms’, Nat. Rev. Neurosci., 2007, 8, (1), pp. 5769.
    62. 62)
      • 62. Xue, Y., Wu, J., Sun, J.: ‘Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro’, Toxicol. Lett., 2012, 214, (2), pp. 9198.
    63. 63)
      • 63. Huerta-Garcia, E., Perez-Arizti, J.A., Marquez-Ramirez, S.G., et al: ‘Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells’, Free Radical Biol. Med., 2014, 73, pp. 8494.
    64. 64)
      • 64. Hu, R.P., Gong, X.L., Duan, Y.M., et al: ‘Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles’, Biomaterials, 2010, 31, (31), pp. 80438050.
    65. 65)
      • 65. Irie, T., Kawakami, T., Sato, K., et al: ‘Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells’, J. Toxicolog. Sci., 2017, 42, (6), pp. 723729.
    66. 66)
      • 66. Zhou, Y., Hong, F., Tian, Y., et al: ‘Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice’, Toxicol. Res., 2017, 6, (6), pp. 889901.
    67. 67)
      • 67. Shin, J.A., Lee, E.J., Seo, S.M., et al: ‘Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse’, Neuroscience, 2010, 165, (2), pp. 445454.
    68. 68)
      • 68. Hsiao, I.L., Chang, C.C., Wu, C.Y.: ‘Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions’, Chemico-Biolog. Interact., 2016, 254, pp. 3444.
    69. 69)
      • 69. Mohamed, H.R., Hussien, N.A.: ‘Genotoxicity studies of titanium dioxide nanoparticles (TiO2NPs) in the brain of mice’, Scientifica, 2016.
    70. 70)
      • 70. Shimizu, M., Tainaka, H., Oba, T., et al: ‘Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse’, Part Fibre Toxicol., 2009, 6, 6:20 doi:10.1186/1743-8977-6-20.
    71. 71)
      • 71. Mohammadipour, A., Hosseini, M., Fazel, A., et al: ‘The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring’, Toxicol. Ind. Health, 2016, 32, (2), pp. 221228.
    72. 72)
      • 72. Cui, Y., Chen, X., Zhou, Z., et al: ‘Prenatal exposure to nanoparticulate titanium dioxide enhances depressive-like behaviors in adult rats’, Chemosphere, 2014, 96, pp. 99104.
    73. 73)
      • 73. Hu, Q., Guo, F., Zhao, F., et al: ‘Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12’, Chemosphere, 2017, 173, pp. 373379.
    74. 74)
      • 74. Milaneschi, Y., Cesari, M., Simonsick, E.M., et al: ‘Lipid peroxidation and depressed mood in community-dwelling older men and women’, PLoS One, 2013, 8, (6), doi: 10.1371/journal.pone.0065406. Print 2013.
    75. 75)
      • 75. Zhao, Y., Zhao, B.: ‘Oxidative stress and the pathogenesis of Alzheimer's disease’, Oxid. Med. Cell. Longev., 2013, 2013, p. 316523.
    76. 76)
      • 76. Joshi, Y.B., Pratico, D.: ‘Lipid peroxidation in psychiatric illness: overview of clinical evidence’, Oxid. Med. Cell. Longev., 2014, 2014, p. 828702.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0109
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address