Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Screening the UV-blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications

Nanomaterials play a vital role in textile industries due to their unique properties and applications. There is an increase in the use of nanoscale phyto products in textiles to control the bacterial infection in fabrics. Here, natural herbal nanoparticles of different sizes were prepared from shade-dried Aloe vera plant leaves using ball milling technique without any additives. The amorphous herbal A. vera nanoparticles possess an average particle size of 40 ± 2 nm and UV-absorption maximum at 269 nm. A. vera nanopowders–chitosan nanocomposites were prepared and coated on cotton fabrics using pad-dry cure method. The evaluation of antibacterial activity against Escherichia coli (22.05 ± 0.06 mm) and Staphylococcus aureus (27.17 ± 0.02 mm), UV-protection properties (UV-protection factor = 57.2 ± 0.1), and superhydrophobic nature (155 ± 3°) of the prepared herbal nanoparticles and their composites were analysed by disc diffusion, UV–visible spectral analysis, and contact angle analysis. Understanding the functional properties of herbal nanoparticles, coated particles on fabrics highlights their potential applications in protective clothing with better antimicrobial properties, hydrophobicity, and UV-protection properties. This study of using A. vera herbal nanoparticles in textiles significantly enhances the fabric performance to develop protective textile fabrics in defence and biomedical fields.

Inspec keywords: nanocomposites; nanomedicine; protective coatings; curing; contact angle; surface morphology; visible spectra; textile fibres; scanning electron microscopy; ultraviolet spectra; cotton fabrics; protective clothing; particle size; X-ray fluorescence analysis; amorphous state; microorganisms; biodiffusion; light scattering; hydrophobicity; ball milling; nanoparticles; nanofabrication; filled polymers; fluorescence; antibacterial activity; X-ray diffraction; biomedical materials; radiation protection

Other keywords: X-ray fluorescence spectrometry; amorphous herbal A. vera nanoparticles; disc diffusion; scanning electron microscopy; contact angle analysis; dynamic light scattering; morphological characteristics; ball milling; textile applications; natural herbal nanoparticle size; UV-protection factor; nanomaterials; textile industries; UV-absorption maximum; shade-dried Aloe vera plant leaves; UV-blocking; biomedical fields; protective textile fabrics; UV-visible spectrophotometry; average particle size; UV-visible spectral analysis; antimicrobial properties; Staphylococcus aureus; UV-protection properties; pad-dry cure method; superhydrophobic nature; nanoscale phyto products; Escherichia coli; X-ray diffraction; bacterial infection; protective clothing; cotton fabrics; A. vera nanopowders-chitosan nanocomposites

Subjects: Health and safety aspects; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Polymer reactions and polymerization; Structure of amorphous, disordered and polymeric materials; Textile industry; Nanofabrication using thin film deposition methods; Surface treatment and coating techniques; Solid surface structure; Other methods of nanofabrication; Preparation of reinforced polymers and polymer-based composites; Clothing industry; Optical properties of thin films, low-dimensional and nanoscale structures; Engineering materials; Visible and ultraviolet spectra of other nonmetals; Nanotechnology applications in biomedicine; Biomedical materials; Electromagnetic radiation spectrometry (chemical analysis); Powder techniques, compaction and sintering

References

    1. 1)
      • 13. Lalitha Devi, D., Srinivas, B., Narasinga Rao, B.: ‘An evaluation antimicrobial activity of Aloe barbadensis Miller (Aloe vera) gel extract’, J. Pharm. Biomed. Sci., 2012, 21, pp. 14.
    2. 2)
      • 38. Karthik, S., Suriyaprabha, R., Vinoth, M., et al: ‘Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from Acalypha indica for biomedical applications’, RSC Adv., 2017, 7, pp. 4176341770.
    3. 3)
      • 21. Raymond, J.C., Joan, W., Bryan, C., et al: ‘Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials’, BMC Cancer, 2014, 14, p. 53.
    4. 4)
      • 22. Sato, Y., Ohta, S.: ‘Studies on chemical protectors against radiation XXXI. Protective effects of Aloe ar- borescens on skin injury induced by X-irradiation’, Yakugaku Zasshi, 1990, 110, pp. 876884.
    5. 5)
      • 2. Chen, M., Wang, S., Tan, M., et al: ‘Applications of nanoparticles in herbal medicine: zedoary turmeric oil and its active compound β-elemene’, Am. J. Chin. Med., 2011, 39, pp. 10931102.
    6. 6)
      • 12. Ferro, V.A., Bradbury, F., Cameron, P., et al: ‘In vitro susceptibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller’, Antimicrob. Agents Chemother., 2003, 47, pp. 11371139.
    7. 7)
      • 1. Kumar, C.S.S.R.: ‘Nanotechnology tools in pharmaceutical R&D’, Mater. Today., 2010, 12, pp. 2430.
    8. 8)
      • 25. Ahmed, S., Ikram, S.: ‘Chitosan based scaffolds and their applications in wound healing’, Aci. Life Sci., 2016, 10, pp. 2737.
    9. 9)
      • 28. Karthik, S., Suriyaprabha, R., Balu, K.S., et al: ‘Influence of ball milling on the particle size and antimicrobial properties of Tridax procumbens leaf nanoparticles’, IET Nanobiotechnol., 2017, 11, pp. 1217.
    10. 10)
      • 4. Mariita, R.M., Orodho, J.A., Okemo, P.O., et al: ‘Methanolic extracts of Aloe Secundiflora Engl. inhibits in vitro growth of tuberculosis and diarrhea-causing bacteria’, Pharmacognosy Res., 2011, 3, pp. 9599.
    11. 11)
      • 6. Ingale, A.G., Chaudhari, A.N.: ‘Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach’, J. Nanomed. Nanotechnol., 2013, 4, pp. 17.
    12. 12)
      • 30. Rajendran, R., Radhai, R., Balakumar, C., et al: ‘Synthesis and characterization of neem chitosan nanocomposites for development of antimicrobial cotton textiles’, J. Eng. Fiber Fabr., 2012, 7, pp. 136141.
    13. 13)
      • 24. Silva, S.S., Caridade, S.G., Mano, J.F., et al: ‘Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications’, Carbohydr. Polym., 2013, 98, pp. 581588.
    14. 14)
      • 11. Robson, M.C., Heggers, J.P., Hagstrom, W. J.: ‘Myth, magic, witchcraft or fact? Aloe vera revisited’, Burn Care Res., 1982, 3, pp. 157163.
    15. 15)
      • 5. Heggers, J.P., Pineless, G.R., Robson, M.C.: ‘Dermaide Aloe/Aloe vera gel: comparison of the antimicrobial effects’, Am. J. Med. Technol., 1979, 41, pp. 293294.
    16. 16)
      • 39. Chandrasekar, S., Vijayakumar, S., Rajendran, R., et al: ‘Herbal-chitosan nanocomposites for durable antibacterial finishing on cotton materials’, Int. J. Biopharm., 2013, 4, (3), pp. 219224.
    17. 17)
      • 36. Chong, K.L., Seong, S.H., Young, K.S., et al: ‘Prevention of ultraviolet radiation-induced suppression of contact hypersensitivity by Aloe vera gel components’, Int. J. Immunopharmacol., 1999, 21, pp. 303310.
    18. 18)
      • 33. Rajendran, R., Radhai, R., Rajalakshmi, V.: ‘Development of mosquito repellent fabrics using Vitex negundo loaded nanoparticles’, Malaya. J. Biosci., 2014, 1, (1), pp. 1923.
    19. 19)
      • 15. Rajeswari, R., Umadevi, M., Sharmila Rahale, C., et al: ‘Aloe vera: the miracle plant its medicinal and traditional uses in India’, J. Pharmacogn. Phytochem., 2012, 1, pp. 118124.
    20. 20)
      • 32. Dhineshbabu, N.R., Manivasakan, P., Yuvakkumar, R., et al: ‘Enhanced functional properties of ZrO2/SiO2 hybrid nanosol coated cotton fabrics’, J. Nanosci. Nanotechnol., 2013, 13, pp. 40174024.
    21. 21)
      • 3. Chithra, P., Sajithal, G.B., Chandrakasan, G.: ‘Influence of Aloe vera on glycosaminoglycans in the matrix of healing dermal wounds in rats’, J. Ethnopharmacol., 1998, 59, pp. 179186.
    22. 22)
      • 8. Zandi, K., Zadeh, A.: ‘Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study’, Afr. J. Biotechnol., 2007, 6, (15), pp. 17701773.
    23. 23)
      • 9. Doshi, S., Mohan, P., Prasad Kabra, M., et al: ‘Evaluation of analgesic activity of some polyherbal extracts against acetic acid induced writhing in experimental animals’, World J. Pharm. Sci., 2014, 2, (1), pp. 105107.
    24. 24)
      • 10. Heck, E., Head, M., Nowak, D., et al: ‘Aloe vera (gel) cream as a topical treatment for outpatient burns’, Burns, 1981, 7, pp. 291294.
    25. 25)
      • 31. Dhineshbabu, N.R., Manivasakan, P., Karthik, A., et al: ‘Hydrophobicity, flame retardancy and antibacterial properties of cotton fabrics functionalised with MgO/methyl silicate nanocomposites’, RSC Adv., 2014, 4, pp. 432161432173.
    26. 26)
      • 17. Thompson, J.E.: ‘Topical use of Aloe vera derived allantoin gel in otolaryngology’, Ear Nose Throat J., 1991, 70, p. 119.
    27. 27)
      • 29. Dhineshbabu, N.R., Arunmetha, S., Manivasakan, P.G., et al: ‘Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites’, J. Ind. Text., 2016, 45, pp. 119.
    28. 28)
      • 20. Serrano, M., Valverde, J.M., Guillen, F., et al: ‘Use of Aloe vera gel coating preserves the functional properties of table grapes’, J. Agr. Food Chem., 2006, 54, pp. 38823886.
    29. 29)
      • 14. Pugh, N., Ross, S.A., Elsohly, M.A., et al: ‘Characterization of aloeride, a new high molecular weight polysaccharide from Aloe vera with potent immunostimulatory activity’, J. Agric. Food Chem., 2001, 49, pp. 10301034.
    30. 30)
      • 19. Yagi, A., Egusa, T., Arase, M., Tanabe, M., et al: Isolation and characterization of the glycoprotein fraction with a proliferation-promoting activity on human and hamster cells in vitro from Aloe vera gel. Planta Med., 1997, 63, pp. 1821.
    31. 31)
      • 34. Rajendran, R., Rajalakshmi, V., Radhai, R.: ‘Fabrication of antimicrobial medical textiles using V. negundo loaded nanoparticles’, Int. J. Pharm. Pharm. Sci., 2014, 3, pp. 13941406.
    32. 32)
      • 37. Gupta, B.: ‘Textile based smart wound dressings’, Indian J. Fibre Text., 2010, 35, pp. 174187.
    33. 33)
      • 16. Davis, R.H., Leitner, M.G., Russo, J.M., et al: ‘Anti inflammatory activity of Aloe vera against a spectrum of irritants’, J. Am. Podiatr. Med. Assoc., 1989, 79, pp. 263276.
    34. 34)
      • 23. Byeon, S., Pelley, R., Ullrich, S.E., et al: ‘Aloe barbadensis extracts reduce the production of interleukin-10 after exposure to ultraviolet radiation’, J. Invest. Dermatol., 1988, 110, pp. 811817.
    35. 35)
      • 27. Vinoth, M., Suriyaprapha, R., Arunmetha, S., et al: ‘Synthesis of Nothapodytes nimmoniana leaf nanoparticles for antireflective and self-cleaning applications’, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 46, pp. 14451449.
    36. 36)
      • 7. Kumar, S., Yadav, J.P., Lorenzetti, L.J.: ‘Ethanobotanical and pharmacological properties of Aloe vera: a review’, J. Med. Plants Res., 2014, 8, (48), pp. 13871398.
    37. 37)
      • 26. Karthik, S., Vinoth, M., Balu, , et al: ‘An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem)’, J. Alloys Compd., 2017, 723, pp. 698707.
    38. 38)
      • 35. Vinay, G.N., Sanjeev, R.S.: ‘Antibacterial properties of silk fabric treated with Aloe vera and silver nanoparticles’, J. Text. I., 2017, 108, pp. 385396.
    39. 39)
      • 18. Heggers, J.P., Pelley, R.P., Robson, M.C.: ‘Beneficial effects of Aloe in wound healing’, Phytother. Res., 1993, 7, pp. 4852.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0097
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0097
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address