http://iet.metastore.ingenta.com
1887

Biofilm reduction, cell proliferation, anthelmintic and cytotoxicity effect of green synthesised silver nanoparticle using Artemisia vulgaris extract

Biofilm reduction, cell proliferation, anthelmintic and cytotoxicity effect of green synthesised silver nanoparticle using Artemisia vulgaris extract

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Infectious diseases are caused by etiological agents. Nanotechnology has been used to minimise the effect of clinical pathogens which have resistance to antibiotics. In current research synthesis, characterisation and biological activities of green synthesised nanoparticles using Artemisia vulgaris extract have been done. The characterisation of AgNPs was carried out using Fourier transform infrared spectroscopy, UV-Vis spectrophotometry, and scanning electron microscopy. Anti-biofilm, cell viability, antibacterial, brine shrimp lethality, and deoxyribonucleic acid protection effects have been screened. UV-Vis spectra showed the absorption peak of synthesised nanoparticles at 400 nm. FT-IR indicated the involvement of the functional group in the preparation of AgNPs. SEM showed the spherical shape of AgNPs with 30 nm diameter. Biological screening results revealed the antibacterial effect against clinical bacterial pathogens. Biofilm reduction and cell viability assay also supported the antibacterial effect. Cytotoxicity effect was recorded as 100% at 200 μg/ml through brine shrimp lethality assay. Protein kinase inhibition zones recorded for AgNPs (16 mm bald) compared with A. vulgaris extract (11 mm bald). It has been concluded that green synthesised AgNPs are more effective against infectious pathogens and could be used as a potential source for therapeutic drugs.

References

    1. 1)
      • 1. Esteban, J.I., Oporto, B., Aduriz, G., et al: ‘A survey of food-borne pathogens in free-range poultry farms’, Int. J. Food. Microbiol., 2008, 123, pp. 177182.
    2. 2)
      • 2. Kolar, M., Urbanek, K., Latal, T.: ‘Antibiotic selective pressure and development of bacterial resistance’, Int. J. Antimicrob. Agents, 2001, 17, (5), pp. 357363.
    3. 3)
      • 3. Gajjar, P., Pettee, B., Britt, D.W., et al: ‘Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440’, J. Biol. Eng., 2009, 3, (1), p. 1.
    4. 4)
      • 4. Mahendra, R., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, (1), pp. 7683.
    5. 5)
      • 5. Sharma, V.K., Ria, A.Y., Yekaterina, L.: ‘Silver nanoparticles: green synthesis and their antimicrobial activities’, Adv. Colloid Interface Sci., 2009, 145, (1), pp. 8396.
    6. 6)
      • 6. Savithramma, N., Rao, M.L., Devi, P.S.: ‘Evaluation of antibacterial efficacy of biologically synthesized silver nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shorea tumbuggaia Roxb’, J. Biol. Sci., 2011, 11, (1), pp. 3945.
    7. 7)
      • 7. Prathna, T.C., Chandrasekaran, N., Raichur, A.M., et al: ‘Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size’, Colloids Surf. B, Biointerfaces, 2011, 82, (1), pp. 152159.
    8. 8)
      • 8. Sivaraman, S. K., Elango, I., Kumar, S., et al: ‘A green protocol for room temperature synthesis of silver nanoparticles in seconds’, Curr. Sci., 2009, 97, (7), pp. 10551059.
    9. 9)
      • 9. Sathishkumar, M., Sneha, K., Kwak, I.S., et al: ‘Phyto-crystallization of palladium through reduction process using Cinnamon zeylanicum bark extract’, J. Hazard. Mater., 2009, 171, pp. 400404.
    10. 10)
      • 10. Ankamwar, B., Damle, C., Ahmad, A., et al: ‘Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution’, J. Nanosci. Nanotechnol., 2005, 5, (10), pp. 16651671.
    11. 11)
      • 11. Huang, J., Li, Q., Sun, D., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, (10), p. 105104.
    12. 12)
      • 12. Song, J.Y., Kim, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, (1), p. 79.
    13. 13)
      • 13. Cronquist, A.: ‘An integrated system of classification of flowering plants’ (Columbia University Press, New York, NY, 1981), p, 1262.
    14. 14)
      • 14. Walter, H.L., Memory, P.F., Elvin, L.: ‘Medical botany: plants affecting human health’ (Wiley, Hoboken, NJ, 2003, 2nd edn.), p. 345.
    15. 15)
      • 15. Shaik, I., Hussain, S.J.: ‘Some important herbs used in the treatment of cancer: part I. Role of biotechnology in medicinal and aromatic plants’,vol. 11 (Ukaaz Publications, Hyderabad, 2004), pp. 1011.
    16. 16)
      • 16. Teixiera, D., Silva, J.A.: ‘Mining the essential oils of the Anthemideae’, Afr. J. Biotechnol., 2004, 3, (12), pp. 706720.
    17. 17)
      • 17. Gilani, A.H., Yaeesh, S., Jamal, Q., et al: ‘Hepatoprotective activity of aqueous methanol extract of Artemisia vulgaris’, Phytother. Res., 2005, 19, (2), pp. 170172.
    18. 18)
      • 18. Gaire, B.P., Subedi, L.: ‘Medicinal plant diversity and their pharmacological aspects of Nepal Himalayas’, Pharmacogn. J., 2011, 3, (25), pp. 617.
    19. 19)
      • 19. Ashraf, M., Hayat, M.Q., Jabeen, S., et al: ‘Artemisia L. species recognized by the local community of northern areas of Pakistan as folk therapeutic plants’, J. Med. Plants Res., 2010, 4, (2), pp. 112119.
    20. 20)
      • 20. Waseem, M., Shah, M.A.U.R., Qureshi, A., et al: ‘Ethnopharmacological survey of plants used for the treatment of stomach, diabetes, and ophthalmic diseases in Sudhan Gali, Kashmir, Pakistan’, Acta Bot. Yunnan., 2006, 28, pp. 535542.
    21. 21)
      • 21. Zargar, M., Hamid, A.A., Bakar, F.A., et al: ‘Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.’, Molecules, 2011, 16, (8), pp. 66676676.
    22. 22)
      • 22. Rios, J.L., Recio, M.C., Villar, A.: ‘Screening methods for natural products with antimicrobial activity: a review of the literature’, J. Ethnopharmacol., 1988, 23, (2–3), pp. 127149.
    23. 23)
      • 23. Seeley, H.W., Vandemark, P.J., Lee, J.J.: ‘Microbes in action, a labortary manual of microbiology’ (W. H. Freeman and Co., New York, 2001, 4th edn.), pp. 57130.
    24. 24)
      • 24. Hammer, K.A., Carson, C.F., Riley, T.V.: ‘Antimicrobial activity of essential oils and other plant extracts’, J. Appl. Microbiol., 1999, 86, (6), pp. 985990.
    25. 25)
      • 25. Hartman, D.: ‘Perfecting your spread plate technique’, J. Microbiol. Biol. Educ., 2011, 12, (2), pp. 204205.
    26. 26)
      • 26. O'Toole, G.A.: ‘Microtiter dish biofilm formation assay’, J. Vis. Exp., 2011, (47), p. 2437.
    27. 27)
      • 27. Gerlier, D., Thomasset, N.: ‘Use of MTT colorimetric assay to measure cell activation’, J. Immunol. Methods, 1986, 94, (1–2), pp. 5763.
    28. 28)
      • 28. Singh, N.P., McCoy, M.T., Tice, R.R., et al: ‘A simple technique for quantitation of low levels of DNA damage in individual cells’, Exp. Cell Res., 1988, 175, (1), pp. 184191.
    29. 29)
      • 29. Fatima, H., Khan, K., Zia, M., et al: ‘Extraction optimization of medicinally important metabolites from Datura innoxia Mill: an in vitro biological and phytochemical investigation’, BMC Complement Altern. Med., 2015, 15, (1), p. 376.
    30. 30)
      • 30. Bibi, Y., Nisa, S., Chaudhary, F.M., et al: ‘Antibacterial activity of some selected medicinal plants of Pakistan’, BMC Complement Altern. Med., 2011, 11, (1), p. 52.
    31. 31)
      • 31. Ghosh, T., Maity, T.K., Bose, A., et al: ‘Investigation of in-vitro antelmentic activity of Rumex hastatus D. Don stem and root’, Ind. J. Nat. Prod., 2005, 21, pp. 1619.
    32. 32)
      • 32. Noginov, M.A., Zhu, G., Bahoura, M., et al: ‘The effect of gain and absorption on surface plasmons in metal nanoparticles’, Appl. Phys. B, Lasers Opt., 2007, 86, (3), pp. 455460.
    33. 33)
      • 33. Jha, A.K., Prasad, K., Prasad, K.: ‘A green low-cost biosynthesis of Sb2O3 nanoparticles’, Biochem. Eng. J., 2009, 43, (3), pp. 303306.
    34. 34)
      • 34. Shankar, S.S., Rai, A., Sastry, M.: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid Interface Sci., 2004, 275, (2), pp. 496502.
    35. 35)
      • 35. Sarkar, R., Kumbhakar, P., Mitra, A.K.: ‘Green synthesis of silver nanoparticles and its optical properties’, Dig. J. Nanomater. Biostruct., 2010, 5, (2), pp. 491496.
    36. 36)
      • 36. Pal, S.L., Jana, U., Manna, P.K., et al: ‘Nanoparticle: an overview of preparation and characterization’, J. Appl. Pharm. Sci., 2011, 1, (6), pp. 228234.
    37. 37)
      • 37. Bar, H., Bhui, D.K., Sahoo, G.P., et al: ‘Green synthesis of silver nanoparticles using latex of Jarropha curcas’, Colloids Surf. Physicochem. Eng. Aspects, 2009, 339, (1), pp. 134139.
    38. 38)
      • 38. Annamalai, A., Baby, S.T., Jose, N.A., et al: ‘Biosynthesis and characterization of silver and gold nanoparticles using aqueous leaf extraction of Phyllanthus amams Schum and Thonn’, World Appl. Sci. J., 2011, 13, (8), pp. 18331840.
    39. 39)
      • 39. Prasad, K. S., Pathak, D., Patel, A., et al: ‘Biogenic synthesis of silver nanoparticles using Nicotina tobaccum leaf extract and study of their antibacterial effect’, Afr. J. Biotechnol., 2011, 10, (41), pp. 81228130.
    40. 40)
      • 40. Makarov, V.V., Love, A.J., Sinitsyna, O.V., et al: ‘Green nanotechnologies, synthesis of metal nanoparticles using plants’, Acta Nat., 2014, 6, (1), p. 20.
    41. 41)
      • 41. Uzun, E., Sariyar, G., Adsersen, A., et al: ‘Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species’, J. Ethnopharmacol., 2004, 95, (2), pp. 287296.
    42. 42)
      • 42. Tümen, G.: ‘Labiatae family as medicinal plants from Balıkesir district in Turkey’, Uludağ Üniversitesi Eğitim Fakülteleri Dergisi, 1989, 4, (2), pp. 712.
    43. 43)
      • 43. Kalemba, D., Kusewicz, D., Świa¸der, K.: ‘Antimicrobial properties of the essential oil of Artemisia asiatica Nakai’, Phytother. Res., 2002, 16, (3), pp. 288291.
    44. 44)
      • 44. Korkmaz, H., Gürdal, A.: ‘Effect of Artemisia santonicum L. on blood glucose in normal and alloxan-induced diabetic rabbits’, Phytother. Res., 2002, 16, (7), pp. 675676.
    45. 45)
      • 45. Ahmadizadeh, C., Monadi, A., Rezaie, A., et al: ‘Antibacterial activity of methanolic extract and essence of Sagerbrush (Artemisia vulgaris) against pathogenic bacteria’, Bull. Environ. Pharmacol. Life Sci., 2014, 3, (2), pp. 121125.
    46. 46)
      • 46. Naili, M.B., Alghazeer, R.O., Saleh, N.A., et al: ‘Evaluation of antibacterial and antioxidant activities of Artemisia campestris (Astraceae) and Ziziphus lotus (Rhamnacea)’, Arab. J. Chem., 2010, 3, (2), pp. 7984.
    47. 47)
      • 47. Kasture, A.V., Wadodkar, S.G., Mehadik, K.R., et al: ‘Pharmaceutical analysis: Instrumental methods’, vol. 2 (Nirali Prakshan, 2002, 8th edn.), pp. 4855.
    48. 48)
      • 48. Ramezani, M., Fazli-Bazzaz, B.S., Saghafi-Khadem, F., et al: ‘Antimicrobial activity of four Artemisia species of Iran’, Fitoterapia, 2004, 75, (2), pp. 201203.
    49. 49)
      • 49. Sharma, B.K., Saha, A., Rahaman, L., et al: ‘Silver inhibits the biofilm formation of Pseudomonas aeruginosa’, Adv. Microbiol., 2015, 5, (10), p. 677.
    50. 50)
      • 50. Goswami, S.R., Sahareen, T., Singh, M., et al: ‘Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm’, J. Ind. Eng. Chem., 2015, 26, pp. 7380.
    51. 51)
      • 51. Park, H. S., Park, J., Roh, S., et al: ‘Removal characteristics of engineered nanoparticles by activated sludge’, J. Ind. Eng. Chem., 2013, 19, pp. 614619.
    52. 52)
      • 52. Kalishwaralal, K., Deepak, V., Pandian, S.R.K., et al: ‘Biosynthesis of silver and gold nanoparticles using Brevibacterium casei’, Colloids Surf. B, Biointerfaces, 2010, 77, (2), pp. 257262.
    53. 53)
      • 53. Donlan, R.M., Costerton, J.W.: ‘Biofilms: survival mechanisms of clinically relevant microorganisms’, Clin. Microbiol. Rev., 2002, 15, (2), pp. 167193.
    54. 54)
      • 54. Ansari, M.A., Khan, H.M., Khan, A.A., et al: ‘Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital’, Ind. J. Med. Microbiol., 2015, 33, (1), p. 101.
    55. 55)
      • 55. Gurunathan, S., Han, J.W., Kwon, D.N., et al: ‘Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria’, Nanoscale Res. Lett., 2014, 9, (1), p. 373.
    56. 56)
      • 56. Mahmoudi, M., Serpooshan, V.: ‘Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat’, ACS Nano, 2012, 6, (3), pp. 26562664.
    57. 57)
      • 57. Cheng, L., Zhang, K., Weir, M.D., et al: ‘Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks’, Dental Mater., 2013, 29, (4), pp. 462472.
    58. 58)
      • 58. Velázquez-Velázquez, J.L., Santos-Flores, A.J., Sánchez-Sánchez, R., et al: ‘Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles’, Mater. Sci. Eng. C, 2015, 49, pp. 604611.
    59. 59)
      • 59. Eddouks, M., Maghrani, M., Lemhadri, A., et al: ‘Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south east region of Morocco (Tafilalet)’, J. Ethnopharmacol., 2002, 82, pp. 97103.
    60. 60)
      • 60. Kim, J. H., Kim, H.K., Jeon, S.B., et al: ‘New sesquiterpene–monoterpene lactone, artemisolide, isolated from Artemisia argyi’, Tetrahedron Lett., 2002, 43, pp. 62056208.
    61. 61)
      • 61. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., et al: ‘Biogenic silver nanoparticles for cancer treatment: an experimental report’, Colloids Surf. B, Biointerfaces, 2013, 106, pp. 8692.
    62. 62)
      • 62. Regulus, P., Duroux, B., Bayle, P.A., et al: ‘Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion’, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, (35), pp. 1403214037.
    63. 63)
      • 63. Yoshikawa, Y., Hizume, K., Oda, Y., et al: ‘Protective effect of vitamin C against double strand breaks in reconstituted chromatin visualized by single molecule observation’, J. Biophys., 2006, 90, pp. 993999.
    64. 64)
      • 64. Temraz, A., El-Tantawy, W. H.: ‘Characterization of antioxidant activity of extract from Artemisia vulgaris’, Pak. J. Pharm. Sci., 2008, 21, (4), pp. 321326.
    65. 65)
      • 65. Ali, A., Jahan, N., Jamil, A., et al: ‘Protection of DNA during oxidative stress and cytotoxic potential of Artemisia absinthium’, Pak. J. Pharm. Sci., 2016, 29, (11), pp. 295299.
    66. 66)
      • 66. Chethan, J., Kumara, K.S., Niranjana, S.R., et al: ‘Evaluation of antioxidant and antibacterial activities of methanolic flower extract of Wedelia trilobata (L.) Hitch’, Afr. J. Biotechnol., 2012, 11, (41), pp. 98299834.
    67. 67)
      • 67. Luo, H., Lin, S., Ren, F., et al: ‘Antioxidant and microbial capacity of Chinese medicinal herb extracts in raw sheep meat’, J. Food Prot., 2007, 70, pp. 1444014445.
    68. 68)
      • 68. Radford, P.: ‘Application and evaluation of antimicrobial finishes’, Am. Dyest. Rep., 1973, 62, (11), pp. 4859.
    69. 69)
      • 69. Singh, R., Wagh, P., Wadhwani, S., et al: ‘Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics’, Int. J. Nanomed., 2013, 8, pp. 42774290.
    70. 70)
      • 70. AshaRani, P.V., Low Kah Mun, G., Hande, M.P., et al: ‘Cytotoxicity and genotoxicity of silver nanoparticles in human cells’, ACS Nano, 2008, 3, (2), pp. 279290.
    71. 71)
      • 71. Zubia, M., Fabre, M.S., Kerjean, V., et al: ‘Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France)’, Botan. Marina, 2009, 52, (3), pp. 268277.
    72. 72)
      • 72. Yao, J. C., Shah, M.H., Ito, T., et al: ‘Everolimus for advanced pancreatic neuroendocrine tumors’, N. Engl. J. Med., 2011, 3646, pp. 514523.
    73. 73)
      • 73. Sangeetha, J., Soundarya, K., Santhosh, K., et al: ‘Evaluation of in-vitro anthelmintic property of Passiflora edulis Linn’, Res. J. Pharm. Biol. Chem. Sci., 2010, 1, (3), pp. 715718.
    74. 74)
      • 74. Dahiya, S.S., Solanki, P.: ‘Antimicrobial and anthelmintic activities of some newly synthesized triazoles’, Int. J. Pharm. Sci., 2011, 3, pp. 244247.
    75. 75)
      • 75. Tripathi, K.: ‘Essentials of medical pharmacology by Jaypee brothers’ (Medical Publishers, J. J.B., India Delhi, 2008, 5th edn.), p. 808.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0096
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address