Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract

In this study, the authors report a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum-graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG-AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG-AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG-AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG-AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.

References

    1. 1)
      • 25. Liyana-Pathirana, C.M., Shahidi, F.: ‘Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions’, J. Agric. Food Chem., 2005, 53, (7), pp. 24332440.
    2. 2)
      • 8. Niraimathi, K.L., Sudha, V., Lavanya, R., et al: ‘Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities’, Colloids Surf. B, Biointerfaces, 2013, 102, pp. 288291.
    3. 3)
      • 33. Qu, D., Sun, W., Chen, Y., et al: ‘Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae Herba extract’, Int. J. Nanomed., 2014, 9, pp. 18711882.
    4. 4)
      • 6. AshaRani, P.V., Low Kah Mun, G., Hande, M.P., et al: ‘Cytotoxicity and genotoxicity of silver nanoparticles in human cells’, ACS Nano, 2009, 3, (2), pp. 279290.
    5. 5)
      • 11. Aziz, N., Faraz, M., Pandey, R., et al: ‘Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties’, Langmuir: ACS J. Surf. Colloids, 2015, 31, (42), pp. 1160511612.
    6. 6)
      • 40. Banerjee, P., Satapathy, M., Mukhopahayay, A., et al: ‘Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis’, Bioresources Bioprocess., 2014, 1, (1), pp. 110.
    7. 7)
      • 38. Ibrahim, H.M.M.: ‘Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms’, J. Radiat. Res. Appl. Sci., 2015, 8, (3), pp. 265275.
    8. 8)
      • 24. Das, S., Dey, K.K., Dey, G., et al: ‘Antineoplastic and apoptotic potential of traditional medicines thymoquinone and diosgenin in squamous cell carcinoma’, PloS One, 2012, 7, (10), p. e46641.
    9. 9)
      • 35. Das, B., Dash, S.K., Mandal, D., et al: ‘Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage’, Arabian J. Chem., 2017, 10, (6), pp. 862876.
    10. 10)
      • 41. Chakraborty, P., Dam, D., Abraham, J.: ‘Bioactivity of lanthanum nanoparticle synthesized using Trigonella foenum-graecum seed extract’, J. Pharm. Sci. Res., 2016, 8, (11), pp. 12531257.
    11. 11)
      • 27. Moran, J.F., Klucas, R.V., Grayer, R.J., et al: ‘Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties’, Free Radic. Biol. Med., 1997, 22, (5), pp. 861870.
    12. 12)
      • 14. Patil, R.S., Kokate, M.R., Kolekar, S.S.: ‘Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 91, pp. 234238.
    13. 13)
      • 2. Oberdorster, G., Maynard, A., Donaldson, K., et al: ‘Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy’, Part. Fibre Toxicol., 2005, 2, p. 8.
    14. 14)
      • 10. Abid, J.P., Wark, A.W., Brevet, P.F., et al: ‘Preparation of silver nanoparticles in solution from a silver salt by laser irradiation’, Chem. Commun., 2002, 7, pp. 792793.
    15. 15)
      • 22. Fuller, S., Stephens, J.M.: ‘Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome’, Adv. Nutr., 2015, 6, (2), pp. 189197.
    16. 16)
      • 18. Ahmed, Q., Gupta, N., Kumar, A., et al: ‘Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia Arjuna Bark extract’, Artif. Cells, Nanomed. Biotechnol., 2017, 45, pp. 11921200.
    17. 17)
      • 26. Ajitha, B., Reddy, Y.A., Reddy, P.S.: ‘Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities’, J. Photochem. Photobiol. B, Biol., 2015, 146, pp. 19.
    18. 18)
      • 30. Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U., et al: ‘Biomimetic synthesis of Agnps by aqueous extract of Syzygium aromaticum’, Mater. Lett., 2012, 75, pp. 3335.
    19. 19)
      • 39. Rastogi, S.K., Rutledge, V.J., Gibson, C., et al: ‘Ag colloids and Ag clusters over edaptms-coated silica nanoparticles: synthesis, characterization, and antibacterial activity against Escherichia coli’, Nanomed., Nanotechnol. Biol. Med., 2011, 7, (3), pp. 305314.
    20. 20)
      • 16. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., et al: ‘Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens’, Bioprocess Biosyst. Eng., 2014, 37, (10), pp. 19351943.
    21. 21)
      • 37. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., et al: ‘Strain specificity in antimicrobial activity of silver and copper nanoparticles’, Acta Biomat., 2008, 4, (3), pp. 707716.
    22. 22)
      • 23. Raju, J., Gupta, D., Rao, A.R., et al: ‘Trigonellafoenum graecum (Fenugreek) seed powder improves glucose homeostasis in Alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes’, Mol. Cell. Biochem., 2001, 224, (1-2), pp. 4551.
    23. 23)
      • 17. Veerakumar, K., Govindarajan, M., Rajeswary, M.: ‘Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae)’, Parasitol. Res., 2013, 112, (12), pp. 40734085.
    24. 24)
      • 34. MubarakAli, D., Thajuddin, N., Jeganathan, K., et al: ‘Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens’, Colloids Surf. B, Biointerfaces, 2011, 85, (2), pp. 360365.
    25. 25)
      • 20. Vidhu, V.K., Philip, D.: ‘Catalytic degradation of organic dyes using biosynthesized silver nanoparticles’, Micron, 2014, 56, pp. 5462.
    26. 26)
      • 5. Shiraishi, Y., Toshima, N.: ‘Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters’, Colloids Surf. A, Physicochem. Eng. Aspects, 2000, 169, (1-3), pp. 5966.
    27. 27)
      • 7. Panacek, A., Kolar, M., Vecerova, R., et al: ‘Antifungal activity of silver nanoparticles against candida Spp’, Biomaterials, 2009, 30, (31), pp. 63336340.
    28. 28)
      • 28. Lokina, S., Stephen, A., Kaviyarasan, V., et al: ‘Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles’, Eur. J. Med. Chem., 2014, 76, pp. 256263.
    29. 29)
      • 19. Kumari, R.M., Nikita, T., Nidhi, G., et al: ‘Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract’, Adv. Natural Sci. Nanosci. Nanotechnol., 2016, 7, (4), p. 045009.
    30. 30)
      • 9. Zamiri, R., Azmi, B.Z., Sadrolhosseini, A.R., et al: ‘Preparation of silver nanoparticles in virgin coconut oil using laser ablation’, Int. J. Nanomed., 2011, 6, pp. 7175.
    31. 31)
      • 36. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., et al: ‘Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2011, 79, (3), pp. 594598.
    32. 32)
      • 31. Zayed, M.F., Eisa, W.H., Shabaka, A.A.: ‘Malva parviflora extract assisted green synthesis of silver nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 98, pp. 423428.
    33. 33)
      • 12. El-Baz, A.F., El-Batal, A.I., Abomosalam, F.M., et al: ‘Extracellular biosynthesis of anti-candida silver nanoparticles using Monascus purpureus’, J. Basic Microbiol., 2015, 56, (5), pp. 531540.
    34. 34)
      • 3. Gittins, D.I., Bethell, D., Schiffrin, D.J., et al: ‘A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups’, Nature, 2000, 408, (6808), pp. 6769.
    35. 35)
      • 13. Korbekandi, H., Mohseni, S., Mardani Jouneghani, R., et al: ‘Biosynthesis of silver nanoparticles using saccharomyces cerevisiae’, Artif. Cells, Nanomed. Biotechnol., 2014, 44, pp. 15.
    36. 36)
      • 21. Chatterjee, S., Kumar, M., Kumar, A.: ‘Chemomodulatory effect of Trigonella Foenum Graecum (L.) seed extract on two stage mouse skin carcinogenesis’, Toxicol. Int., 2012, 19, (3), pp. 287294.
    37. 37)
      • 15. Subba Rao, Y., Kotakadi, V.S., Prasad, T.N., et al: ‘Green synthesis and spectral characterization of silver nanoparticles from Lakshmi Tulasi (Ocimum sanctum) leaf extract’, Spectrochim. Acta. A, Mol. Biomol. Spectrosc., 2013, 103, pp. 156159.
    38. 38)
      • 1. Darroudi, M., Ahmad, M.B., Abdullah, A.H., et al: ‘Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles’, Int. J. Nanomed., 2011, 6, pp. 569574.
    39. 39)
      • 4. Xu, J., Xiao, X., Ren, F., et al: ‘Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle Island’, Nanoscale Res. Lett., 2012, 7, (1), p. 239.
    40. 40)
      • 29. Xia, Y., Halas, N.J.: ‘Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures’, MRS Bull., 2005, 30, (05), pp. 338348.
    41. 41)
      • 32. Jiang, X., Chen, W., Chen, C., et al: ‘Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach’, Nanoscale Res. Lett., 2011, 6, (1), p. 32.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0089
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address