access icon free Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity

We report new, eco-friendly and green method for the synthesis of sulphur nanoparticles using sodium polysulphide in the presence of leaf extracts of four different medicinal plants, which can be used for treatment of bacterial infections. Sodium polysulphide and acidic solution (H2SO4) in the presence of plant leaf extract developed the yellowish precipitate in solution, which indicated the formation of sulphur nanoparticles. UV–Vis spectrophotometer analysis of reaction mixture showed absorbance spectra in the range of 292–296 nm, which is supposed to be specific for sulphur nanoparticles. Zeta potential study of sulphur nanoparticles synthesized from Catharanthus roseus showed more stability when compared with other medicinal plants. Sulphur nanoparticles synthesized from C. roseus were further characterized by XRD analysis, FTIR analysis, and TEM analysis. The biogenic sulphur nanoparticles were spherical, polydispersed with particle size of 70–80 nm. Evaluation of antibacterial study revealed that synthesized sulphur nanoparticles exhibited better bactericidal efficacy against common pathogenic bacteria Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 200 μg/ml with significant activity used in combination with antibiotic. It can be concluded that the synthesized sulphur nanoparticles can be used as antibacterial agents after thorough experimental trials in animals.

Inspec keywords: sulphur; Fourier transform infrared spectra; nanofabrication; ultraviolet spectra; nanoparticles; microorganisms; sodium compounds; antibacterial activity; electrokinetic effects; X-ray diffraction; visible spectra; transmission electron microscopy; biomedical materials

Other keywords: transmission electron microscopy analysis; eco-friendly; antibacterial activity; X-ray diffraction analysis; nanoparticle tracking analysis; size 70 nm to 80 nm; Escherichia coli; sodium polysulphide; sulphur nanoparticles; bio-inspired synthesis; medicinal plants; acidic solution; pathogenic bacteria; Staphylococcus aureus; UV–visible analysis; bacterial infections; Fourier transform infrared spectroscopy; S; wavelength 292 nm to 296 nm; leaf extract; UV–Vis spectrophotometer analysis; green synthesis; biological synthesis; zeta potential analysis

Subjects: Visible and ultraviolet spectra of other nonmetals; Electrochemistry and electrophoresis; Biomedical materials; Methods of nanofabrication and processing; Infrared and Raman spectra in inorganic crystals; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 28. Halder, S., Yadav, K.K., Sarkar, R., et al: ‘Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents’, Springer Plus, 2015, 4, 672, pp. 114.
    2. 2)
      • 7. Barkauskas, J., Juskenas, R., Mileriene, V., et al: ‘Effect of sulfur on the synthesis and modification of carbon nanostructures’, Mater. Res. Bull., 2007, 42, pp. 17321739.
    3. 3)
      • 9. Ilardi, E.A., Vitaku, E., Njardarson, J.T.: ‘Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery’, J. Med. Chem., 2014, 57, (7), pp. 28322842.
    4. 4)
      • 27. Torcato, I.M., Huang, Y.H., Franquelim, H.G., et al: ‘The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability’, Chem. Bio. Chem., 2013, 14, (15), pp. 20132022.
    5. 5)
      • 13. Choudhury, S.R., Goswami, A.: ‘Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent’, J. Appl. Microbiol., 2012, 114, pp. 110.
    6. 6)
      • 23. Filipe, V., Hawe, A., Jiskoot, W.: ‘Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates’, Pharm. Res., 2010, 27, (5), pp. 796810.
    7. 7)
      • 20. Wright, M.: ‘Nanoparticle tracking analysis for the multiparameter char­acterization and counting of nanoparticle suspensions’, in Soloviev, M. (Ed.): ‘Nanoparticles in biology and medicine’ (Humana Press, New York, 2012), pp. 511524.
    8. 8)
      • 19. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    9. 9)
      • 11. Suleiman, M., Masri, M.A., Ali, A.A., et al: ‘Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities’, J. Mater. Environ. Sci., 2015, 6, (2), pp. 513518.
    10. 10)
      • 15. Bura-Nakić, E., Margus, M., Jurašin, D., et al: ‘Chronoamperometric study of elemental sulphur (S) nanoparticles (NPs) in NaCl water solution: new methodology for S NPs sizing and detection’, Geo. Chem. Trans., 2015, 16, pp. 19.
    11. 11)
      • 17. Chaudhuri, R.G., Paria, S.: ‘Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions’, J. Colloid Interface Sci., 2011, 354, pp. 563569.
    12. 12)
      • 3. McManus, P.S., Kartanos, V., Stasiak, M.: ‘Sensitivity of cold-climate wine grape cultivars to copper, sulfur, and difenoconazole fungicides’, Crop Prot., 2017, 92, pp. 122130.
    13. 13)
      • 5. Chen, H., Dong, W., Ge, J., et al: ‘Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries’, Sci. Rep., 2013, 3, pp. 16.
    14. 14)
      • 1. Gupta, A.K., Nicol, K.: ‘The use of sulfur in dermatology’, J. Drugs Dermatol., 2004, 3, (4), pp. 427431.
    15. 15)
      • 14. Awwad, A.M., Salem, N.M., Abdeen, A.O.: ‘Novel approach for synthesis sulfur (S-NPs) nanoparticles using Albizia julibrissin fruits extract’, Adv. Mat. Lett., 2015, 6, (5), pp. 432435.
    16. 16)
      • 8. Santiago, P., Carvajal, E., Mendoza, D., et al: ‘Synthesis and structural characterization of sulfur nanowires’, Microsc. Microanal., 2006, 12, (02), pp. 690691.
    17. 17)
      • 16. Soleimani, M., Aflatouni, F., Khani, A.: ‘A new and simple method for sulfur nanoparticles synthesis’, Colloid J., 2013, 75, (1), pp. 112116.
    18. 18)
      • 24. Coates, J.: ‘Interpretation of infrared spectra, a practical approach’, in Meyers, R.A. (Ed.): ‘Encyclopaedia of analytical chemistry’ (John Wiley & Sons Ltd, Newtown, USA, 2006), pp. 1081510837.
    19. 19)
      • 6. Zhang, Y., Li, K., Huang, J., et al: ‘Preparation of monodispersed sulfur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulfur battery’, Carbon, 2017, 114, pp. 814.
    20. 20)
      • 12. Baskar, S., Pragati, P., Chandrababu, K.: ‘Anti-microbial studies using sulphur nanoparticles on dandruff causing Malassezia Yeasts’. Proc. World Congress Engineering-VolIi Wce, London, UK, 2015, pp. 15.
    21. 21)
      • 26. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., et al: ‘Antibacterial properties of nanoparticles’, Trends Biotechnol., 2012, 31, pp. 6162.
    22. 22)
      • 25. Choudhury, S.R., Mandal, A., Chakravorty, D., et al: ‘Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid’, J. Nanopart. Res.,, 2013, 15, 1491, pp. 111.
    23. 23)
      • 18. Arakha, M., Saleem, M., Mallick, B.C., et al: ‘The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle’, Sci. Rep., 2015, 5, p. 9578.
    24. 24)
      • 2. Ellis, M.A., Ferree, D.C., Funt, R.C., et al: ‘Effects of an apple scab-resistant cultivar on use patterns of inorganic and organic fungicides and economics of disease control’, Plant Dis., 1998, 82, pp. 428433.
    25. 25)
      • 22. Rai, M., Ingle, A.P., Gade, A.K., et al: ‘Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy’, IET Nanobiotechnol., 2015, 9, (5), pp. 280287.
    26. 26)
      • 21. Luque, R., Ojeda, M., Garcia, A., et al: ‘Evaluation of biomass-derived stabilizing agents for colloidal silver nanoparticles via nanoparticle tracking analysis (NTA)’, RSC Adv., 2013, 3, pp. 71197123.
    27. 27)
      • 10. Rai, M., Ingle, A.P., Paralikar, P.: ‘Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine’, Expert Rev. Anti. Infect. Ther., 2016, 19, pp. 110.
    28. 28)
      • 4. Yong, Z., Wei, Z., Ping, Z., et al: ‘Novel nanosized adsorbing composite cathode materials for the next generation lithium battery’, J. Wuhan Univ. Technol., 2007, 22, (2), pp. 234239.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0079
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading