http://iet.metastore.ingenta.com
1887

Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity

Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We report new, eco-friendly and green method for the synthesis of sulphur nanoparticles using sodium polysulphide in the presence of leaf extracts of four different medicinal plants, which can be used for treatment of bacterial infections. Sodium polysulphide and acidic solution (H2SO4) in the presence of plant leaf extract developed the yellowish precipitate in solution, which indicated the formation of sulphur nanoparticles. UV–Vis spectrophotometer analysis of reaction mixture showed absorbance spectra in the range of 292–296 nm, which is supposed to be specific for sulphur nanoparticles. Zeta potential study of sulphur nanoparticles synthesized from Catharanthus roseus showed more stability when compared with other medicinal plants. Sulphur nanoparticles synthesized from C. roseus were further characterized by XRD analysis, FTIR analysis, and TEM analysis. The biogenic sulphur nanoparticles were spherical, polydispersed with particle size of 70–80 nm. Evaluation of antibacterial study revealed that synthesized sulphur nanoparticles exhibited better bactericidal efficacy against common pathogenic bacteria Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 200 μg/ml with significant activity used in combination with antibiotic. It can be concluded that the synthesized sulphur nanoparticles can be used as antibacterial agents after thorough experimental trials in animals.

References

    1. 1)
      • 1. Gupta, A.K., Nicol, K.: ‘The use of sulfur in dermatology’, J. Drugs Dermatol., 2004, 3, (4), pp. 427431.
    2. 2)
      • 2. Ellis, M.A., Ferree, D.C., Funt, R.C., et al: ‘Effects of an apple scab-resistant cultivar on use patterns of inorganic and organic fungicides and economics of disease control’, Plant Dis., 1998, 82, pp. 428433.
    3. 3)
      • 3. McManus, P.S., Kartanos, V., Stasiak, M.: ‘Sensitivity of cold-climate wine grape cultivars to copper, sulfur, and difenoconazole fungicides’, Crop Prot., 2017, 92, pp. 122130.
    4. 4)
      • 4. Yong, Z., Wei, Z., Ping, Z., et al: ‘Novel nanosized adsorbing composite cathode materials for the next generation lithium battery’, J. Wuhan Univ. Technol., 2007, 22, (2), pp. 234239.
    5. 5)
      • 5. Chen, H., Dong, W., Ge, J., et al: ‘Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries’, Sci. Rep., 2013, 3, pp. 16.
    6. 6)
      • 6. Zhang, Y., Li, K., Huang, J., et al: ‘Preparation of monodispersed sulfur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulfur battery’, Carbon, 2017, 114, pp. 814.
    7. 7)
      • 7. Barkauskas, J., Juskenas, R., Mileriene, V., et al: ‘Effect of sulfur on the synthesis and modification of carbon nanostructures’, Mater. Res. Bull., 2007, 42, pp. 17321739.
    8. 8)
      • 8. Santiago, P., Carvajal, E., Mendoza, D., et al: ‘Synthesis and structural characterization of sulfur nanowires’, Microsc. Microanal., 2006, 12, (02), pp. 690691.
    9. 9)
      • 9. Ilardi, E.A., Vitaku, E., Njardarson, J.T.: ‘Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery’, J. Med. Chem., 2014, 57, (7), pp. 28322842.
    10. 10)
      • 10. Rai, M., Ingle, A.P., Paralikar, P.: ‘Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine’, Expert Rev. Anti. Infect. Ther., 2016, 19, pp. 110.
    11. 11)
      • 11. Suleiman, M., Masri, M.A., Ali, A.A., et al: ‘Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities’, J. Mater. Environ. Sci., 2015, 6, (2), pp. 513518.
    12. 12)
      • 12. Baskar, S., Pragati, P., Chandrababu, K.: ‘Anti-microbial studies using sulphur nanoparticles on dandruff causing Malassezia Yeasts’. Proc. World Congress Engineering-VolIi Wce, London, UK, 2015, pp. 15.
    13. 13)
      • 13. Choudhury, S.R., Goswami, A.: ‘Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent’, J. Appl. Microbiol., 2012, 114, pp. 110.
    14. 14)
      • 14. Awwad, A.M., Salem, N.M., Abdeen, A.O.: ‘Novel approach for synthesis sulfur (S-NPs) nanoparticles using Albizia julibrissin fruits extract’, Adv. Mat. Lett., 2015, 6, (5), pp. 432435.
    15. 15)
      • 15. Bura-Nakić, E., Margus, M., Jurašin, D., et al: ‘Chronoamperometric study of elemental sulphur (S) nanoparticles (NPs) in NaCl water solution: new methodology for S NPs sizing and detection’, Geo. Chem. Trans., 2015, 16, pp. 19.
    16. 16)
      • 16. Soleimani, M., Aflatouni, F., Khani, A.: ‘A new and simple method for sulfur nanoparticles synthesis’, Colloid J., 2013, 75, (1), pp. 112116.
    17. 17)
      • 17. Chaudhuri, R.G., Paria, S.: ‘Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions’, J. Colloid Interface Sci., 2011, 354, pp. 563569.
    18. 18)
      • 18. Arakha, M., Saleem, M., Mallick, B.C., et al: ‘The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle’, Sci. Rep., 2015, 5, p. 9578.
    19. 19)
      • 19. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    20. 20)
      • 20. Wright, M.: ‘Nanoparticle tracking analysis for the multiparameter char­acterization and counting of nanoparticle suspensions’, in Soloviev, M. (Ed.): ‘Nanoparticles in biology and medicine’ (Humana Press, New York, 2012), pp. 511524.
    21. 21)
      • 21. Luque, R., Ojeda, M., Garcia, A., et al: ‘Evaluation of biomass-derived stabilizing agents for colloidal silver nanoparticles via nanoparticle tracking analysis (NTA)’, RSC Adv., 2013, 3, pp. 71197123.
    22. 22)
      • 22. Rai, M., Ingle, A.P., Gade, A.K., et al: ‘Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy’, IET Nanobiotechnol., 2015, 9, (5), pp. 280287.
    23. 23)
      • 23. Filipe, V., Hawe, A., Jiskoot, W.: ‘Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates’, Pharm. Res., 2010, 27, (5), pp. 796810.
    24. 24)
      • 24. Coates, J.: ‘Interpretation of infrared spectra, a practical approach’, in Meyers, R.A. (Ed.): ‘Encyclopaedia of analytical chemistry’ (John Wiley & Sons Ltd, Newtown, USA, 2006), pp. 1081510837.
    25. 25)
      • 25. Choudhury, S.R., Mandal, A., Chakravorty, D., et al: ‘Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid’, J. Nanopart. Res.,, 2013, 15, 1491, pp. 111.
    26. 26)
      • 26. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., et al: ‘Antibacterial properties of nanoparticles’, Trends Biotechnol., 2012, 31, pp. 6162.
    27. 27)
      • 27. Torcato, I.M., Huang, Y.H., Franquelim, H.G., et al: ‘The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability’, Chem. Bio. Chem., 2013, 14, (15), pp. 20132022.
    28. 28)
      • 28. Halder, S., Yadav, K.K., Sarkar, R., et al: ‘Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents’, Springer Plus, 2015, 4, 672, pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0079
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address