Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles

Due to the strong effect of nanoparticles' size and surface properties on cellular uptake and bio-distribution, the selection of coating material for magnetic core–shell nanoparticles (CSNPs) is very important. In this study, the effects of four different biocompatible coating materials on the physical properties of Fe3O4 (magnetite) nanoparticles (NPs) for different biomedical applications are investigated and compared. In this regard, magnetite NPs are prepared by a simple co-precipitation method. Then, CSNPs including Fe3O4 as a core and carbon, dextran, ZnO (zincite) and SiO2 (silica) as different shells are synthesised using simple one- or two-step methods. A comprehensive study is carried out on the prepared samples using X-ray diffraction, vibrating sample magnetometry, transmission electron microscopy and Fourier transform infrared spectroscopy analyses. According to the authors' findings, it is suggested that carbon- and dextran-coated magnetite NPs with high M s have great potential in the application of magnetic resonance imaging contrast agents. Moreover, silica-coated magnetite NPs with high coercivity are potentially suitable candidates for hyperthermia and ZnO-coated Fe3O4 is potentially suitable for photothermal therapy.

References

    1. 1)
      • 18. Wan, J., Li, H., Chen, K.: ‘Synthesis and characterization of Fe3O4–ZnO core–shell structured nanoparticles’, Mater. Chem. Phys., 2009, 114, pp. 3032.
    2. 2)
      • 21. Xu, X.Q., Shen, H., Xu, J.R.: ‘Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran’, Appl. Surf. Sci., 2005, 252, pp. 494500.
    3. 3)
      • 33. Zhang, Y., Shen, Y., Teng, X., et al: ‘Mitochondria-targeting nanoplatform with fluorescent carbon dots for long time imaging and magnetic field-enhanced cellular uptake’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1020110212.
    4. 4)
      • 11. Jafari, A., Salouti, M., Shayesteh, S.F., et al: ‘Synthesis and characterization of bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI’, Nanotechnology, 2015, 26, pp. 075101075112.
    5. 5)
      • 35. Gnanaprakash, G., Ayyappan, S., Jayakumar, T., et al: ‘Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature’, Nanotechnology, 2006, 17, pp. 58515857.
    6. 6)
      • 4. Bomatí-Miguel, O., Morales, M.P., Tartaj, P., et al: ‘Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging’, Biomaterials, 2005, 26, pp. 56955703.
    7. 7)
      • 5. Kunzmann, A., Andersson, B., Vogt, C., et al: ‘Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells’, Toxicol. Appl. Pharmacol., 2011, 253, pp. 8193.
    8. 8)
      • 39. Bumb, A., Brechbiel, M.W., Choyke, P.L., et al: ‘Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica’, Nanotechnology, 2008, 19, pp. 335601335607.
    9. 9)
      • 24. Wei, X.W., Zhu, G.X., Xia, C.J., et al: ‘A solution phase fabrication of magnetic nanoparticles encapsulated in carbon’, Nanotechnology, 2006, 17, pp. 43074311.
    10. 10)
      • 36. Gubin, S.P.: ‘Magnetic nanoparticles’ (Wiley-VCH, Weinheim, Germany, 2009).
    11. 11)
      • 42. Guo, S., Li, D., Zhang, L., et al: ‘Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery’, Biomaterials, 2009, 30, pp. 18811889.
    12. 12)
      • 19. Khorrami, G.H, Zak, A.K., Kompany, A.: ‘Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods’, Ceram. Int., 2012, 38, pp. 56835690.
    13. 13)
      • 12. Jafari, A., Shayesteh, S.F., Salouti, M., et al: ‘Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles’, J. Magn. Magn. Mater., 2015, 379, pp. 305312.
    14. 14)
      • 32. Cho, N.H., Cheong, T.C., Min, J.H., et al: ‘A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy’, Nat. Nanotechnol., 2011, 6, pp. 675682.
    15. 15)
      • 27. Sun, C., Lee, J.S., Zhang, M.: ‘Magnetic nanoparticles in MR imaging and drug delivery’, Adv. Drug Deliv. Rev., 2008, 60, pp. 12521265.
    16. 16)
      • 28. Im, S.H., Herricks, T., Lee, Y.T., et al: ‘Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles’, Chem. Phys. Lett., 2005, 401, pp. 1923.
    17. 17)
      • 1. Choi, H., Kim, S.J., Choi, E.H., et al: ‘Study of hyperthermia through the bioplasma treatment and magnetic properties of Fe3O4 nanoparticles’, IEEE Trans. Mag., 2015, 51, pp. 14.
    18. 18)
      • 2. Zhang, J.L., Srivastava, R.S., Misra, R.D.K.: ‘Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system’, Langmuir, 2007, 23, pp. 63426351.
    19. 19)
      • 17. Wang, Z., Guo, H., Yu, Y., et al: ‘Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction’, J. Magn. Magn. Mater., 2006, 302, pp. 397404.
    20. 20)
      • 10. Weng, Y.R., Zhao, J., Yu, S.Y., et al: ‘Multifunctional visible/near-infrared luminescent core–shell magnetic silica structured nanocomposites’, CrystEngComm, 2014, 16, pp. 62576262.
    21. 21)
      • 25. Nejati, K., Zabihi, R.: ‘Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method’, Chem. Cent. J., 2012, 6, pp. 16.
    22. 22)
      • 40. Ni, S., Lin, S., Pan, Q., et al: ‘Synthesis of core–shell α-Fe2O3 hollow micro-spheres by a simple two-step process’, J. Alloys Compd., 2009, 478, pp. 876879.
    23. 23)
      • 41. Zhang, K., Amponsah, O., Arslan, M., et al: ‘Magnetic nanocomposite spinel and feCo core–shell and mesoporous systems’, J. Magn. Magn. Mater., 2012, 324, pp. 19381944.
    24. 24)
      • 29. Laurent, S., Forge, D., Port, M., et al: ‘Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications’, Chem. Rev., 2008, 108, pp. 20642110.
    25. 25)
      • 23. Fan, F.L., Qin, Z., Bai, J.: ‘Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles’, J. Environ. Radioact., 2012, 106, pp. 4046.
    26. 26)
      • 7. Jiang, W., Yang, H.C., Yang, S.Y., et al: ‘Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible’, J. Magn. Magn. Mater., 2004, 283, pp. 210214.
    27. 27)
      • 31. Bae, H., Ahmad, T., Rhee, I., et al: ‘Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging’, Nanoscale Res. Lett., 2012, 7, pp. 15.
    28. 28)
      • 15. Hong, R.Y., Zhang, S.Z., Di, G.Q., et al: ‘Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles’, Mater. Res. Bull., 2008, 43, pp. 24572468.
    29. 29)
      • 16. Cornell, R.M., Schwertmann, U.: ‘The iron oxides. structure, properties, reactions, occurrences and uses’ (John Wiley & Sons, Weinheim, 2006, 2nd edn.).
    30. 30)
      • 3. Kashanian, S., Rafipour, R., Tarighat, F.A., et al: ‘Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers’, IET Nanobiotechnol.., 2012, 6, pp. 102109.
    31. 31)
      • 9. Piao, S.H., Chae, H.S., Choi, H.J.: ‘Carbonyl iron suspension with core–shell structured Fe3O4@SiO2 nanoparticle additives and its magnetorheological property’, IEEE Trans. Mag., 2015, 51, pp. 14.
    32. 32)
      • 38. Ozkaya, T., Toprak, M.S., Baykal, A., et al: ‘Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization’, J. Alloys Compd., 2009, 472, pp. 1823.
    33. 33)
      • 13. Farimani, M.H.R., Shahtahmasebi, N., Roknabadi, M.R., et al: ‘Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach’, Physica E, 2013, 53, pp. 207216.
    34. 34)
      • 14. Zheng, J., Liu, Z.Q., Zhao, X.S., et al: ‘One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes’, Nanotechnology, 2012, 23, pp. 165601165609.
    35. 35)
      • 8. Hong, R.Y., Feng, B., Chen, L.L., et al: ‘Synthesis, characterization and MRI application of dextran-coated Fe3O4magnetic nanoparticles’, Biochem. Eng. J., 2008, 42, pp. 290300.
    36. 36)
      • 34. Mu, Q., Yang, L., Davis, J.C., et al: ‘Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles’, Biomaterials, 2010, 31, pp. 50835090.
    37. 37)
      • 37. Ahmad, S., Riaz, U., Kaushik, A., et al: ‘Soft template synthesis of super paramagnetic Fe3O4 nanoparticles: a novel technique’, J. Inorg. Organomet. Polym., 2009, 19, pp. 355360.
    38. 38)
      • 22. Ma, M., Zhang, Y., Yu, W., et al: ‘Preparation and characterization of magnetite nanoparticles coated by amino silane’, Colloid. Surface A., 2003, 212, pp. 219226.
    39. 39)
      • 26. Nasrazadani, S., Raman, A.: ‘The application of infrared spectroscopy to the study of rust systems—II. study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3)’, Corros. Sci., 1993, 34, pp. 13551365.
    40. 40)
      • 30. Wang, Z., Xiao, P., He, N.: ‘Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction’, Carbon, 2006, 44, pp. 32773284.
    41. 41)
      • 6. Oghabian, M.A, Gharehaghaji, N., Masoudi, A., et al: ‘Effect of coating materials on lymph nodes detection using magnetite nanoparticles’, Adv. Sci. Eng. Med., 2013, 5, pp. 3745.
    42. 42)
      • 20. Jarrett, B.R, Frendo, M., Vogan, J., et al: ‘Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging’, Nanotechnology, 2007, 18, pp. 035603035610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0044
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address