http://iet.metastore.ingenta.com
1887

Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles

Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Due to the strong effect of nanoparticles' size and surface properties on cellular uptake and bio-distribution, the selection of coating material for magnetic core–shell nanoparticles (CSNPs) is very important. In this study, the effects of four different biocompatible coating materials on the physical properties of Fe3O4 (magnetite) nanoparticles (NPs) for different biomedical applications are investigated and compared. In this regard, magnetite NPs are prepared by a simple co-precipitation method. Then, CSNPs including Fe3O4 as a core and carbon, dextran, ZnO (zincite) and SiO2 (silica) as different shells are synthesised using simple one- or two-step methods. A comprehensive study is carried out on the prepared samples using X-ray diffraction, vibrating sample magnetometry, transmission electron microscopy and Fourier transform infrared spectroscopy analyses. According to the authors' findings, it is suggested that carbon- and dextran-coated magnetite NPs with high M s have great potential in the application of magnetic resonance imaging contrast agents. Moreover, silica-coated magnetite NPs with high coercivity are potentially suitable candidates for hyperthermia and ZnO-coated Fe3O4 is potentially suitable for photothermal therapy.

References

    1. 1)
      • 1. Choi, H., Kim, S.J., Choi, E.H., et al: ‘Study of hyperthermia through the bioplasma treatment and magnetic properties of Fe3O4 nanoparticles’, IEEE Trans. Mag., 2015, 51, pp. 14.
    2. 2)
      • 2. Zhang, J.L., Srivastava, R.S., Misra, R.D.K.: ‘Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system’, Langmuir, 2007, 23, pp. 63426351.
    3. 3)
      • 3. Kashanian, S., Rafipour, R., Tarighat, F.A., et al: ‘Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers’, IET Nanobiotechnol.., 2012, 6, pp. 102109.
    4. 4)
      • 4. Bomatí-Miguel, O., Morales, M.P., Tartaj, P., et al: ‘Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging’, Biomaterials, 2005, 26, pp. 56955703.
    5. 5)
      • 5. Kunzmann, A., Andersson, B., Vogt, C., et al: ‘Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells’, Toxicol. Appl. Pharmacol., 2011, 253, pp. 8193.
    6. 6)
      • 6. Oghabian, M.A, Gharehaghaji, N., Masoudi, A., et al: ‘Effect of coating materials on lymph nodes detection using magnetite nanoparticles’, Adv. Sci. Eng. Med., 2013, 5, pp. 3745.
    7. 7)
      • 7. Jiang, W., Yang, H.C., Yang, S.Y., et al: ‘Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible’, J. Magn. Magn. Mater., 2004, 283, pp. 210214.
    8. 8)
      • 8. Hong, R.Y., Feng, B., Chen, L.L., et al: ‘Synthesis, characterization and MRI application of dextran-coated Fe3O4magnetic nanoparticles’, Biochem. Eng. J., 2008, 42, pp. 290300.
    9. 9)
      • 9. Piao, S.H., Chae, H.S., Choi, H.J.: ‘Carbonyl iron suspension with core–shell structured Fe3O4@SiO2 nanoparticle additives and its magnetorheological property’, IEEE Trans. Mag., 2015, 51, pp. 14.
    10. 10)
      • 10. Weng, Y.R., Zhao, J., Yu, S.Y., et al: ‘Multifunctional visible/near-infrared luminescent core–shell magnetic silica structured nanocomposites’, CrystEngComm, 2014, 16, pp. 62576262.
    11. 11)
      • 11. Jafari, A., Salouti, M., Shayesteh, S.F., et al: ‘Synthesis and characterization of bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI’, Nanotechnology, 2015, 26, pp. 075101075112.
    12. 12)
      • 12. Jafari, A., Shayesteh, S.F., Salouti, M., et al: ‘Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles’, J. Magn. Magn. Mater., 2015, 379, pp. 305312.
    13. 13)
      • 13. Farimani, M.H.R., Shahtahmasebi, N., Roknabadi, M.R., et al: ‘Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach’, Physica E, 2013, 53, pp. 207216.
    14. 14)
      • 14. Zheng, J., Liu, Z.Q., Zhao, X.S., et al: ‘One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes’, Nanotechnology, 2012, 23, pp. 165601165609.
    15. 15)
      • 15. Hong, R.Y., Zhang, S.Z., Di, G.Q., et al: ‘Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles’, Mater. Res. Bull., 2008, 43, pp. 24572468.
    16. 16)
      • 16. Cornell, R.M., Schwertmann, U.: ‘The iron oxides. structure, properties, reactions, occurrences and uses’ (John Wiley & Sons, Weinheim, 2006, 2nd edn.).
    17. 17)
      • 17. Wang, Z., Guo, H., Yu, Y., et al: ‘Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction’, J. Magn. Magn. Mater., 2006, 302, pp. 397404.
    18. 18)
      • 18. Wan, J., Li, H., Chen, K.: ‘Synthesis and characterization of Fe3O4–ZnO core–shell structured nanoparticles’, Mater. Chem. Phys., 2009, 114, pp. 3032.
    19. 19)
      • 19. Khorrami, G.H, Zak, A.K., Kompany, A.: ‘Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods’, Ceram. Int., 2012, 38, pp. 56835690.
    20. 20)
      • 20. Jarrett, B.R, Frendo, M., Vogan, J., et al: ‘Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging’, Nanotechnology, 2007, 18, pp. 035603035610.
    21. 21)
      • 21. Xu, X.Q., Shen, H., Xu, J.R.: ‘Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran’, Appl. Surf. Sci., 2005, 252, pp. 494500.
    22. 22)
      • 22. Ma, M., Zhang, Y., Yu, W., et al: ‘Preparation and characterization of magnetite nanoparticles coated by amino silane’, Colloid. Surface A., 2003, 212, pp. 219226.
    23. 23)
      • 23. Fan, F.L., Qin, Z., Bai, J.: ‘Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles’, J. Environ. Radioact., 2012, 106, pp. 4046.
    24. 24)
      • 24. Wei, X.W., Zhu, G.X., Xia, C.J., et al: ‘A solution phase fabrication of magnetic nanoparticles encapsulated in carbon’, Nanotechnology, 2006, 17, pp. 43074311.
    25. 25)
      • 25. Nejati, K., Zabihi, R.: ‘Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method’, Chem. Cent. J., 2012, 6, pp. 16.
    26. 26)
      • 26. Nasrazadani, S., Raman, A.: ‘The application of infrared spectroscopy to the study of rust systems—II. study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3)’, Corros. Sci., 1993, 34, pp. 13551365.
    27. 27)
      • 27. Sun, C., Lee, J.S., Zhang, M.: ‘Magnetic nanoparticles in MR imaging and drug delivery’, Adv. Drug Deliv. Rev., 2008, 60, pp. 12521265.
    28. 28)
      • 28. Im, S.H., Herricks, T., Lee, Y.T., et al: ‘Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles’, Chem. Phys. Lett., 2005, 401, pp. 1923.
    29. 29)
      • 29. Laurent, S., Forge, D., Port, M., et al: ‘Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications’, Chem. Rev., 2008, 108, pp. 20642110.
    30. 30)
      • 30. Wang, Z., Xiao, P., He, N.: ‘Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction’, Carbon, 2006, 44, pp. 32773284.
    31. 31)
      • 31. Bae, H., Ahmad, T., Rhee, I., et al: ‘Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging’, Nanoscale Res. Lett., 2012, 7, pp. 15.
    32. 32)
      • 32. Cho, N.H., Cheong, T.C., Min, J.H., et al: ‘A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy’, Nat. Nanotechnol., 2011, 6, pp. 675682.
    33. 33)
      • 33. Zhang, Y., Shen, Y., Teng, X., et al: ‘Mitochondria-targeting nanoplatform with fluorescent carbon dots for long time imaging and magnetic field-enhanced cellular uptake’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1020110212.
    34. 34)
      • 34. Mu, Q., Yang, L., Davis, J.C., et al: ‘Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles’, Biomaterials, 2010, 31, pp. 50835090.
    35. 35)
      • 35. Gnanaprakash, G., Ayyappan, S., Jayakumar, T., et al: ‘Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature’, Nanotechnology, 2006, 17, pp. 58515857.
    36. 36)
      • 36. Gubin, S.P.: ‘Magnetic nanoparticles’ (Wiley-VCH, Weinheim, Germany, 2009).
    37. 37)
      • 37. Ahmad, S., Riaz, U., Kaushik, A., et al: ‘Soft template synthesis of super paramagnetic Fe3O4 nanoparticles: a novel technique’, J. Inorg. Organomet. Polym., 2009, 19, pp. 355360.
    38. 38)
      • 38. Ozkaya, T., Toprak, M.S., Baykal, A., et al: ‘Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization’, J. Alloys Compd., 2009, 472, pp. 1823.
    39. 39)
      • 39. Bumb, A., Brechbiel, M.W., Choyke, P.L., et al: ‘Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica’, Nanotechnology, 2008, 19, pp. 335601335607.
    40. 40)
      • 40. Ni, S., Lin, S., Pan, Q., et al: ‘Synthesis of core–shell α-Fe2O3 hollow micro-spheres by a simple two-step process’, J. Alloys Compd., 2009, 478, pp. 876879.
    41. 41)
      • 41. Zhang, K., Amponsah, O., Arslan, M., et al: ‘Magnetic nanocomposite spinel and feCo core–shell and mesoporous systems’, J. Magn. Magn. Mater., 2012, 324, pp. 19381944.
    42. 42)
      • 42. Guo, S., Li, D., Zhang, L., et al: ‘Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery’, Biomaterials, 2009, 30, pp. 18811889.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0044
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address