access icon free Diospyros assimilis root extract assisted biosynthesised silver nanoparticles and their evaluation of antimicrobial activity

The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face-centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X-ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.

Inspec keywords: surface plasmon resonance; optical microscopy; silver; transmission electron microscopy; nanomedicine; crystallites; particle size; nanofabrication; X-ray diffraction; antibacterial activity; nanoparticles; visible spectra; biomedical materials; microorganisms; ultraviolet spectra

Other keywords: spectral analysis; structural analysis; methanolic root extract; UV-visible absorption spectrum; reaction time; average crystallite size; metallic silver; transmission electron microscopy; FCC crystalline phase; Diospyros assimilis root extract assisted biosynthesised silver nanoparticles; antimicrobial activity; Ag; Ag NPs formation; silver acetate; biologically synthesised nanoparticles; surface plasmon peak; microscopic analysis; X-ray diffraction analysis; metal ion concentration; pathogenic strains

Subjects: Nanotechnology applications in biomedicine; Visible and ultraviolet spectra of metals, semimetals, and alloys; Biomedical materials; Low-dimensional structures: growth, structure and nonelectronic properties; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Preparation of metals and alloys (compacts, pseudoalloys); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Collective excitations (surface states); Other methods of nanofabrication; Microstructure

References

    1. 1)
      • 18. Das, R.K., Brar, S.K.: ‘Plant mediated green synthesis: modified approaches’, Nanoscale, 2013, 5, pp. 1015510162.
    2. 2)
      • 27. Medentsev, G., Akimenko, K.: ‘Naphthoquinone metabolites of the fungi’, Phytochemistry, 1998, 47, (6), pp. 935959.
    3. 3)
      • 7. Nowack, B., Krug, H.F.., Height, M.: ‘120 years of nanosilver history: implications for policy makers’, Environ. Sci. Technol., 2011, 45, (4), pp. 11771183.
    4. 4)
      • 33. Jung, W., Koo, H., Kim, K., et al: ‘Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli’, Appl. Environ. Microbiol., 2008, 74, pp. 21712178.
    5. 5)
      • 11. Bhattacharya, R., Mukherjee, P.: ‘Biological properties of ‘naked’ metal nanoparticles’, Adv. Drug Deliv. Rev., 2008, 60, pp. 12891306.
    6. 6)
      • 10. Xie, J., Lee, J.Y., Wang, D.I.C, et al: ‘Silver nanoplates: from biological to biomemetic synthesis’, ACS Nano, 2007, 1, pp. 429439.
    7. 7)
      • 22. Kavanagh, F.: ‘Analytical microbiology-II’ (Academic Press, New York, 1992), pp. 241243.
    8. 8)
      • 30. Ganapaty, S., Steve Thomas, P., Karagianis, G, et al: ‘Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis’, Phytochemistry, 2006, 67, pp. 19501956.
    9. 9)
      • 35. Kvitek, L., Panacek, A., Soukupova, J., et al: ‘Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)’, J. Phys. Chem., 2008, C 112, pp. 58255834.
    10. 10)
      • 26. Dye, J.L., Cram, K.D., Urbin, S.A., et al: ‘Alkali metals plus silica gel: powerful reducing agents and convenient hydrogen sources’, J. Am. Chem. Soc., 2005, 127, (26), pp. 93389339.
    11. 11)
      • 5. Kim, K.J., Sung, W.S., Moon, S.K., et al: ‘Antifungal effect of silver nanoparticles on dermatophytes’, J. Microbiol. Biotechnol., 2008, 18, (8), pp. 14821484.
    12. 12)
      • 31. Ahmad, A., Mukherjee, P., Senapati, S., et al: ‘Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum’, Colloids Surf. B, Biointerfaces, 2003, 28, pp. 313318.
    13. 13)
      • 37. Prasanth, S., Menaka, I., Muthezhilan, R., et al: ‘Synthesis of plant-mediated silver nanoparticles using medicinal plant extract and evaluation of its anti-microbial activities’, Int. J. Eng. Sci. Technol., 2011, 3, pp. 62356250.
    14. 14)
      • 25. McFarland Nephelometer Standards: http://en.wikipedia.org/wiki/McFarland_standards, accessed 30 December 2012.
    15. 15)
      • 23. Lennette, E.H., Balow, A., Hansler, W.J., et al: ‘Manual of clinical microbiology’ (American Society for Microbiology, Washington DC, 1985, 4th edn), pp. 972974.
    16. 16)
      • 3. Senka, D., Jagoda, S., Bla`enka, K.: ‘Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects: antibiotic resistance in bacteria’, Food Technol. Biotechnol., 2008, 46, (1), pp. 1121.
    17. 17)
      • 28. Yoshida, M., Mori, K.: ‘Synthesis of Diospyrin, a potential agent against leishmaniasis and related parasitic protozoan diseases’, Eur. J. Org. Chem., 2000, 7, pp. 13131317.
    18. 18)
      • 38. Kim, K.-J., Sung, W.S., Suh, B.K., et al: ‘Antifungal activity and mode of action of silver nano-particles on Candida albicans’, BioMetals, 2009, 22, (2), pp. 235242.
    19. 19)
      • 24. Obeidat, M., Shatnawi, M., Al-alawi, M., et al: ‘Antimicrobial activity of crude extracts of some plant leaves’, Res. J. Microbiol., 2012, 7, pp. 5967.
    20. 20)
      • 12. Jain, P.K., Huang, X., El-Sayed, I.H., et al: ‘Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine’, Acc. Chem. Res., 2008, 41, pp. 15781586.
    21. 21)
      • 6. Huh, A.J., Kwon, Y.J.: ‘‘‘Nanoantibiotics’’: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era’, J. Control Release, 2011, 156, pp. 128145.
    22. 22)
      • 19. Gamble, J.S.: ‘Flora of the Presidency of Madras’, in Singh, B., Singh, M.P. (Eds.) (West, Newman and Adlard, London, 1997), vol. 2, pp. 772778.
    23. 23)
      • 32. Chen, Y., Gao, N., Jiang, J.: ‘Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis’, Small, 2013, 9, (19), pp. 32423246.
    24. 24)
      • 8. Salata, O.: ‘Applications of nanoparticles in biology and medicine’, J. Nanobiotechnol., 2004, 2, p. 3.
    25. 25)
      • 4. Klasen, H.J.: ‘A historical review of the use of silver in the treatment of burns. Part I’, Burns, 2000, 26, pp. 117130.
    26. 26)
      • 9. Sanvicens, N., Marco, M.P.: ‘Multifunctional nanoparticles – properties and prospects for their use in human medicine’, Trends Biotechnol., 2008, 26, pp. 425433.
    27. 27)
      • 17. Siavash, I.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    28. 28)
      • 15. Song, J.Y., Kim, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess. Biosyst. Eng., 2009, 32, pp. 7984.
    29. 29)
      • 21. Song, J.Y., Kim, B.S.: ‘Biological synthesis of bimetallic Au/Ag nanoparticles using persimmon (Diopyros kaki) leaf extract’, Korean J. Chem. Eng., 2008, 25, (4), pp. 808811.
    30. 30)
      • 13. Rai, M, Yadav, A, Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, pp. 7683.
    31. 31)
      • 29. Ganapaty, S., Thomas, P.S., Mallika, B.N., et al: ‘Dimeric naphthoquinones from Diospyros discolor’, Biochem. Syst. Ecol., 2005, 33, pp. 313315.
    32. 32)
      • 20. Mallavadhani, U.V., Panda, A.K., Rao, Y.R.: ‘Pharmacology and chemotaxonomy of diospyros’, Phytochemistry, 1998, 49, (4), pp. 901951.
    33. 33)
      • 1. Lingqian, C., Jiaming, H., Feng, C., et al: ‘Nanoscale bio-platforms for living cell interrogation: current status and future perspectives’, Nanoscale, 2016, 8, pp. 31813206.
    34. 34)
      • 39. Monteiro, D.R., Gorup, L.F., Silva, S., et al: ‘Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata’, Biofouling, 2011, 27, (7), pp. 711719.
    35. 35)
      • 34. Fabrega, J., Fawcett, S.R., Renshaw, J.C., et al: ‘Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter’, Environ. Sci. Technol., 2009, 43, pp. 72857290.
    36. 36)
      • 14. Mohanpuria Rana, P.N.K., Yadav, S.K.: ‘Biosynthesis of nanoparticle, technological concepts and future applications’, J. Nanopart. Res., 2007, 7, p. 9275.
    37. 37)
      • 2. Zhaogang, Y., Lingqian, C., Wenliang, L., et al: ‘Novel biomaterials and biotechnology for nanomedicine’, Eur. J. Biomed. Res., 2015, 1, pp. 12.
    38. 38)
      • 36. Kaviya, S., Santhalakshmi, J., Viswanathan, B.: ‘Biosynthesis of silver nanoflakes by Crossandra infundibuliformis leaf extract’, Mater. Lett., 2012, 67, pp. 6466.
    39. 39)
      • 16. Mohammed, F.A., Balaji, K., Girilal, M., et al: ‘Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria’, Nano Med., 2010, 6, pp. 103109.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0042
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading