access icon free Synthesis and studies of bay-substituted perylene diimide-based D–A–D-type SM acceptors for OSC and antimicrobial applications

In this study, the synthesis of a series of bay-substituted donor–acceptor–donor (D–A–D) type perylene diimide derivatives (3a–3d) has been reported as an acceptor for the small-molecule-based organic solar cells (SM-OSCs) by the Suzuki coupling method. It has been evaluated for the antimicrobial activity against some of the bacteria and fungi. The synthesised SMs were confirmed by Fourier transform-infrared spectroscopy, nuclear magnetic resonance (NMR), and high resolution mass spectroscopy (HR-MS). The SMs showed absorption up to 750 nm, which eventually reduced the optical band gap to  < 2 eV. SMs showed thermal stability up to 400 °C. In the SM-OSC, the SMs showed a power conversion efficiency of  < 1% with the P3HT donor in bulk hetero-junction device structure. Additionally, the new SMs showed antimicrobial activity against Gram-negative bacteria such as Escherichia coli Gram-positive bacteria such as Bacillus subtilis and antifungal activity against the Candida albicans, and Aspergillus niger. Cytotoxicity studies were carried out against the breast cancer cell lines MCF-7 using MTT assay method. The results revealed that the SMs was able to inhibit the cancer cells. LD50s calculated for the SMs 3a–3d were between 200 and 400 µg/ml.

Inspec keywords: toxicology; organic semiconductors; Fourier transform spectra; antibacterial activity; infrared spectra; photonic band gap; nanomedicine; cellular biophysics; cancer; mass spectroscopy; biomedical materials; nuclear magnetic resonance; solar cells; microorganisms; thermal stability

Other keywords: antifungal activity; bulk hetero-junction device structure; SM-OSC; wavelength 750 nm; antimicrobial activity; P3HT donor; temperature 400 degC; Bacillus subtilis; small-molecule-based organic solar cells; fungi; HR-MS; Gram-negative bacteria; cancer cells; Aspergillus niger; donor-acceptor-donor type perylene diimide derivatives; cytotoxicity; Candida albicans; optical band gap; breast cancer cell lines MCF-7; Escherichia coli Gram-positive bacteria; Suzuki coupling method; bay-substituted perylene diimide-based D-A-D-type SM acceptors; NMR; MTT assay method; bacteria; Fourier transform infrared spectroscopy

Subjects: Optical properties of organic compounds and polymers (thin films, low-dimensional and nanoscale structures); Nuclear magnetic resonance and relaxation (condensed matter); Cellular biophysics; Infrared and Raman spectra in organic crystals; Photonic band gap (condensed matter); Biomedical materials; Photoelectric conversion; solar cells and arrays; Nanotechnology applications in biomedicine

References

    1. 1)
      • 6. Sivamurugan, V., Kazlauskas, K., Jursenas, S., et al: ‘Synthesis and photophysical properties of glass-forming bay-substituted perylene diimide derivatives’, J. Phys. Chem. B, 2010, 114, (5), pp. 17821789.
    2. 2)
      • 10. Iwanaga, T., Ida, H., Takezak, M., et al: ‘Introduction of two anthracene moieties into perylenebis (dicarboximide) core by Suzuki–Miyaura coupling toward construction of donor–acceptor–donor arrays’, Chem. Lett., 2011, 40, (9), pp. 970971.
    3. 3)
      • 11. Roncali, J.: ‘Conjugated poly(thiophenes): synthesis, functionalization, and applications’, Chem. Rev., 1992, 92, (4), pp. 711738.
    4. 4)
      • 13. Yi, J., Ma, Y., Dou, J., et al: ‘Influence of para-alkyl chain length of the bay-phenyl unit on properties and photovoltaic performance of asymmetrical perylene diimide derivatives’, Dyes Pigments, 2016, 126, pp. 8695.
    5. 5)
      • 27. Kundu, A., Pitchaimani, J., Madhu, V., et al: ‘Bay functionalized perylene diimide with pyridine positional isomers: NIR absorption and selective colorimetric/fluorescent sensing of Fe3 + and Al3 + ions’, J. Fluoresc., 2016, 27, (1), pp. 166173, doi:10.1007/s10895-016-1976-z.
    6. 6)
      • 3. Sathiyan, G., Sivakumar, E.K.T., Ganesamoorthy, R., et al: ‘Review of carbazole based conjugated molecules for highly efficient organic solar cell application’, Tetrahedron Lett., 2016, 57, (3), pp. 243252.
    7. 7)
      • 23. Soh, N., Ueda, T.: ‘Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis: a review’, Talanta, 2011, 85, (3), pp. 12331237.
    8. 8)
      • 21. Zhao, D., Wu, Q., Cai, Z., et al: ‘Electron acceptors based on α-substituted perylene diimide (PDI) for organic solar cells’, Chem. Mater., 2016, 28, (4), pp. 11391146.
    9. 9)
      • 20. Ganesamoorthy, R., Vijayaraghavan, R., Sakthivel, P.: ‘Perylene-diimide based donor–acceptor–donor type small-molecule acceptors for solution-processable organic solar cells’, J. Electron. Mater., 2017, Available at https://doi.org/10.1007/s11664-017-5706-3.
    10. 10)
      • 19. Zhang, X., Zhan, C., Yao, J.: ‘Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process’, Chem. Mater., 2015, 27, (1), pp. 166173.
    11. 11)
      • 5. Kozma, E., Kotowski, D., Luzzati, S., et al: ‘Improving the efficiency of P3HT: perylene diimide solar cells via bay-substitution with fused aromatic rings’, RSC Adv., 2013, 3, (24), pp. 91859188.
    12. 12)
      • 26. Sakthivel, P., Song, H.S., Chakravarthi, N., et al: ‘Synthesis and characterization of new indeno[1,2-b]indole-co-benzothiadiazole-based π-conjugated ladder type polymers for bulk heterojunction polymer solar cells’, Polymer, 2013, 54, (18), pp. 48834893.
    13. 13)
      • 28. Pei, J., Wang, J., Cao, X., et al: ‘Star-shaped polycyclic aromatics based on oligothiophene-functionalized truxene: synthesis, properties, and facile emissive wavelength tuning’, J. Am. Chem. Soc., 2003, 125, (33), pp. 99449945.
    14. 14)
      • 24. Keskin, T., Isgor, B.S., Isgor, G., et al: ‘Evaluation of perylene diimide derivatives for potential therapeutic benefits on cancer chemotherapy’, Chem. Biol. Drug. Des., 2012, 80, (5), pp. 675681.
    15. 15)
      • 30. Chen, S., Liu, Y., Qiu, W., et al: ‘Oligothiophene-functionalized perylene bisimide system: synthesis, characterization, and electrochemical polymerization properties’, Chem. Mater., 2005, 17, (8), pp. 22082215.
    16. 16)
      • 22. Yağan, Ş., Yükrük, F., Ünlü, G.V.: ‘Antimicrobial activities of four perylene diimides’, Afr. J. Microbiol. Res., 2015, 9, (7), pp. 427432.
    17. 17)
      • 8. Hendsbee, A.D., Mcafee, S.M., Sun, J., et al: ‘Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells’, J. Mater. Chem. C, 2015, 3, (34), pp. 89048915.
    18. 18)
      • 31. Boobalan, G., Mohamed, P., Ramkumar, S.G., et al: ‘Fabrication of luminescent perylene bisimide nanorods’, J. Lumin., 2014, 146, pp. 387393.
    19. 19)
      • 17. Lin, Y., Zhan, X.: ‘Non-fullerene acceptors for organic photovoltaics: an emerging horizon’, Mater. Horiz., 2014, 1, (5), pp. 470488.
    20. 20)
      • 14. Liu, Y., Wang, Y., Ai, L., et al: ‘Perylene bisimide regioisomers: effect of substituent position on their spectroscopic, electrochemical, and photovoltaic properties’, Dyes Pigments, 2015, 121, pp. 363371.
    21. 21)
      • 9. Park, G.E., Kim, H.J., Choi, S., et al: ‘New M- and V-shaped perylene diimide small molecules for high-performance nonfullerene polymer solar cells’, Chem. Commun., 2016, 52, (57), pp. 88738876.
    22. 22)
      • 16. Liu, Y., Yang, C., Li, Y.: ‘Synthesis and photovoltaic characteristics of novel copolymers containing poly (phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide’, Macromolecules, 2005, 38, (3), pp. 716721.
    23. 23)
      • 29. Vajiravelu, S., Ramunas, L., Vidas, G.J., et al: ‘Effect of substituents on the electron transport properties of bay substituted perylene diimide derivatives’, J. Mater. Chem., 2009, 19, (24), pp. 42684275.
    24. 24)
      • 7. Fan, H., Zhu, X.: ‘Development of small-molecule materials for high-performance organic solar cells’, Sci. China Chem., 2015, 58, (6), pp. 922936.
    25. 25)
      • 2. Scharber, M.C., Sariciftci, N.S.: ‘Efficiency of bulk-heterojunction organic solar cells’, Prog. Polym. Sci., 2013, 38, (12), pp. 19291940.
    26. 26)
      • 25. Krishnamoorthy, G., Webb, S.P., Nguyen, T., et al: ‘Synthesis of hydroxy and methoxy perylene quinones, their spectroscopic and computational characterization, and their antiviral activity’, Photochem. Photobiol., 2005, 81, (47), pp. 924933.
    27. 27)
      • 15. Kotowski, D., Luzzati, S., Scavia, G., et al: ‘The effect of perylene diimides chemical structure on the photovoltaic performance of P3HT/perylene diimides solar cells’, Dyes Pigments, 2015, 120, pp. 5764.
    28. 28)
      • 32. Malipeddi, M., Lakhani, C., Chhabra, M., et al: ‘An efficient synthesis and in vitro antibacterial evaluation of ruthenium–quinolinol complexes’, Bioorg. Med. Chem. Lett., 2015, 25, (15), pp. 28922896.
    29. 29)
      • 4. Liu, T., Guo, Y., Yi, Y., et al: ‘Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency  > 10%’, Adv. Mater., 2016, 28, (45), pp. 1000810015.
    30. 30)
      • 18. Eftaiha, A.F., Sun, J.P., Hill, G.I., et al: ‘Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells’, J. Mater. Chem. A, 2014, 2, (5), pp. 12011213.
    31. 31)
      • 12. Dittmer, J.J., Petritsch, K., Marseglia, E.A., et al: ‘Photovoltaic properties of MEH-PPV/PPEI blend devices’, Synth. Met., 1999, 102, (1–3), pp. 879880.
    32. 32)
      • 1. Ganesamoorthy, R., Sathiyan, G., Sakthivel, P.: ‘Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications’, Sol. Energy Mater. Sol. Cells, 2017, 148, pp. 102148.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0033
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading