http://iet.metastore.ingenta.com
1887

Synthesis and studies of bay-substituted perylene diimide-based D–A–D-type SM acceptors for OSC and antimicrobial applications

Synthesis and studies of bay-substituted perylene diimide-based D–A–D-type SM acceptors for OSC and antimicrobial applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the synthesis of a series of bay-substituted donor–acceptor–donor (D–A–D) type perylene diimide derivatives (3a–3d) has been reported as an acceptor for the small-molecule-based organic solar cells (SM-OSCs) by the Suzuki coupling method. It has been evaluated for the antimicrobial activity against some of the bacteria and fungi. The synthesised SMs were confirmed by Fourier transform-infrared spectroscopy, nuclear magnetic resonance (NMR), and high resolution mass spectroscopy (HR-MS). The SMs showed absorption up to 750 nm, which eventually reduced the optical band gap to  < 2 eV. SMs showed thermal stability up to 400 °C. In the SM-OSC, the SMs showed a power conversion efficiency of  < 1% with the P3HT donor in bulk hetero-junction device structure. Additionally, the new SMs showed antimicrobial activity against Gram-negative bacteria such as Escherichia coli Gram-positive bacteria such as Bacillus subtilis and antifungal activity against the Candida albicans, and Aspergillus niger. Cytotoxicity studies were carried out against the breast cancer cell lines MCF-7 using MTT assay method. The results revealed that the SMs was able to inhibit the cancer cells. LD50s calculated for the SMs 3a–3d were between 200 and 400 µg/ml.

References

    1. 1)
      • 1. Ganesamoorthy, R., Sathiyan, G., Sakthivel, P.: ‘Review: fullerene based acceptors for efficient bulk heterojunction organic solar cell applications’, Sol. Energy Mater. Sol. Cells, 2017, 148, pp. 102148.
    2. 2)
      • 2. Scharber, M.C., Sariciftci, N.S.: ‘Efficiency of bulk-heterojunction organic solar cells’, Prog. Polym. Sci., 2013, 38, (12), pp. 19291940.
    3. 3)
      • 3. Sathiyan, G., Sivakumar, E.K.T., Ganesamoorthy, R., et al: ‘Review of carbazole based conjugated molecules for highly efficient organic solar cell application’, Tetrahedron Lett., 2016, 57, (3), pp. 243252.
    4. 4)
      • 4. Liu, T., Guo, Y., Yi, Y., et al: ‘Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency  > 10%’, Adv. Mater., 2016, 28, (45), pp. 1000810015.
    5. 5)
      • 5. Kozma, E., Kotowski, D., Luzzati, S., et al: ‘Improving the efficiency of P3HT: perylene diimide solar cells via bay-substitution with fused aromatic rings’, RSC Adv., 2013, 3, (24), pp. 91859188.
    6. 6)
      • 6. Sivamurugan, V., Kazlauskas, K., Jursenas, S., et al: ‘Synthesis and photophysical properties of glass-forming bay-substituted perylene diimide derivatives’, J. Phys. Chem. B, 2010, 114, (5), pp. 17821789.
    7. 7)
      • 7. Fan, H., Zhu, X.: ‘Development of small-molecule materials for high-performance organic solar cells’, Sci. China Chem., 2015, 58, (6), pp. 922936.
    8. 8)
      • 8. Hendsbee, A.D., Mcafee, S.M., Sun, J., et al: ‘Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells’, J. Mater. Chem. C, 2015, 3, (34), pp. 89048915.
    9. 9)
      • 9. Park, G.E., Kim, H.J., Choi, S., et al: ‘New M- and V-shaped perylene diimide small molecules for high-performance nonfullerene polymer solar cells’, Chem. Commun., 2016, 52, (57), pp. 88738876.
    10. 10)
      • 10. Iwanaga, T., Ida, H., Takezak, M., et al: ‘Introduction of two anthracene moieties into perylenebis (dicarboximide) core by Suzuki–Miyaura coupling toward construction of donor–acceptor–donor arrays’, Chem. Lett., 2011, 40, (9), pp. 970971.
    11. 11)
      • 11. Roncali, J.: ‘Conjugated poly(thiophenes): synthesis, functionalization, and applications’, Chem. Rev., 1992, 92, (4), pp. 711738.
    12. 12)
      • 12. Dittmer, J.J., Petritsch, K., Marseglia, E.A., et al: ‘Photovoltaic properties of MEH-PPV/PPEI blend devices’, Synth. Met., 1999, 102, (1–3), pp. 879880.
    13. 13)
      • 13. Yi, J., Ma, Y., Dou, J., et al: ‘Influence of para-alkyl chain length of the bay-phenyl unit on properties and photovoltaic performance of asymmetrical perylene diimide derivatives’, Dyes Pigments, 2016, 126, pp. 8695.
    14. 14)
      • 14. Liu, Y., Wang, Y., Ai, L., et al: ‘Perylene bisimide regioisomers: effect of substituent position on their spectroscopic, electrochemical, and photovoltaic properties’, Dyes Pigments, 2015, 121, pp. 363371.
    15. 15)
      • 15. Kotowski, D., Luzzati, S., Scavia, G., et al: ‘The effect of perylene diimides chemical structure on the photovoltaic performance of P3HT/perylene diimides solar cells’, Dyes Pigments, 2015, 120, pp. 5764.
    16. 16)
      • 16. Liu, Y., Yang, C., Li, Y.: ‘Synthesis and photovoltaic characteristics of novel copolymers containing poly (phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide’, Macromolecules, 2005, 38, (3), pp. 716721.
    17. 17)
      • 17. Lin, Y., Zhan, X.: ‘Non-fullerene acceptors for organic photovoltaics: an emerging horizon’, Mater. Horiz., 2014, 1, (5), pp. 470488.
    18. 18)
      • 18. Eftaiha, A.F., Sun, J.P., Hill, G.I., et al: ‘Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells’, J. Mater. Chem. A, 2014, 2, (5), pp. 12011213.
    19. 19)
      • 19. Zhang, X., Zhan, C., Yao, J.: ‘Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process’, Chem. Mater., 2015, 27, (1), pp. 166173.
    20. 20)
      • 20. Ganesamoorthy, R., Vijayaraghavan, R., Sakthivel, P.: ‘Perylene-diimide based donor–acceptor–donor type small-molecule acceptors for solution-processable organic solar cells’, J. Electron. Mater., 2017, Available at https://doi.org/10.1007/s11664-017-5706-3.
    21. 21)
      • 21. Zhao, D., Wu, Q., Cai, Z., et al: ‘Electron acceptors based on α-substituted perylene diimide (PDI) for organic solar cells’, Chem. Mater., 2016, 28, (4), pp. 11391146.
    22. 22)
      • 22. Yağan, Ş., Yükrük, F., Ünlü, G.V.: ‘Antimicrobial activities of four perylene diimides’, Afr. J. Microbiol. Res., 2015, 9, (7), pp. 427432.
    23. 23)
      • 23. Soh, N., Ueda, T.: ‘Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis: a review’, Talanta, 2011, 85, (3), pp. 12331237.
    24. 24)
      • 24. Keskin, T., Isgor, B.S., Isgor, G., et al: ‘Evaluation of perylene diimide derivatives for potential therapeutic benefits on cancer chemotherapy’, Chem. Biol. Drug. Des., 2012, 80, (5), pp. 675681.
    25. 25)
      • 25. Krishnamoorthy, G., Webb, S.P., Nguyen, T., et al: ‘Synthesis of hydroxy and methoxy perylene quinones, their spectroscopic and computational characterization, and their antiviral activity’, Photochem. Photobiol., 2005, 81, (47), pp. 924933.
    26. 26)
      • 26. Sakthivel, P., Song, H.S., Chakravarthi, N., et al: ‘Synthesis and characterization of new indeno[1,2-b]indole-co-benzothiadiazole-based π-conjugated ladder type polymers for bulk heterojunction polymer solar cells’, Polymer, 2013, 54, (18), pp. 48834893.
    27. 27)
      • 27. Kundu, A., Pitchaimani, J., Madhu, V., et al: ‘Bay functionalized perylene diimide with pyridine positional isomers: NIR absorption and selective colorimetric/fluorescent sensing of Fe3 + and Al3 + ions’, J. Fluoresc., 2016, 27, (1), pp. 166173, doi:10.1007/s10895-016-1976-z.
    28. 28)
      • 28. Pei, J., Wang, J., Cao, X., et al: ‘Star-shaped polycyclic aromatics based on oligothiophene-functionalized truxene: synthesis, properties, and facile emissive wavelength tuning’, J. Am. Chem. Soc., 2003, 125, (33), pp. 99449945.
    29. 29)
      • 29. Vajiravelu, S., Ramunas, L., Vidas, G.J., et al: ‘Effect of substituents on the electron transport properties of bay substituted perylene diimide derivatives’, J. Mater. Chem., 2009, 19, (24), pp. 42684275.
    30. 30)
      • 30. Chen, S., Liu, Y., Qiu, W., et al: ‘Oligothiophene-functionalized perylene bisimide system: synthesis, characterization, and electrochemical polymerization properties’, Chem. Mater., 2005, 17, (8), pp. 22082215.
    31. 31)
      • 31. Boobalan, G., Mohamed, P., Ramkumar, S.G., et al: ‘Fabrication of luminescent perylene bisimide nanorods’, J. Lumin., 2014, 146, pp. 387393.
    32. 32)
      • 32. Malipeddi, M., Lakhani, C., Chhabra, M., et al: ‘An efficient synthesis and in vitro antibacterial evaluation of ruthenium–quinolinol complexes’, Bioorg. Med. Chem. Lett., 2015, 25, (15), pp. 28922896.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0033
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address