http://iet.metastore.ingenta.com
1887

Tip-mould microcontact printing for functionalisation of optical microring resonator

Tip-mould microcontact printing for functionalisation of optical microring resonator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We present an approach to functionalise optical microring resonators as hybridisation platforms, using tip-mould reactive microcontact printing process. Derived from reactive microcontact printing using an ad hoc mould of polydimethylsiloxane (PDMS), the method functionalises single microring resonator with a target-specific capture agent. The authors report the functionalisation of silicon nitride (SiN) diameter microring resonator with single-strand DNA and the hybridisation detection of 100 nM target analyte, while concurrently monitoring not-functionalised microring as a control sensor. Results show that the functionalisation approach permits to address single microring resonators with mutual distance lower than with high precision, enabling a better integration of multiple spotting zones on the chip concerning traditional functionalisation procedures.

References

    1. 1)
      • 1. Senveli, S.U., Tigli, O.: Biosensors in the small scale: methods and technology trends, IET Nanobiotechnol., 2013, 7, (1), pp. 721.
    2. 2)
      • 2. Erickson, D., Mandal, S., Yang, A.H., et al: Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale, Microfluidics Nanofluidics, 2008, 4, (1–2), pp. 3352.
    3. 3)
      • 3. Hunt, H.K., Armani, A.M.: Label-free biological and chemical sensors, Nanoscale, 2010, 2, (9), pp. 15441559.
    4. 4)
      • 4. Xu, D.-X., Vachon, M., Densmore, A., et al: Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays, Opt. Express, 2010, 18, (22), pp. 2286722879.
    5. 5)
      • 5. Zinoviev, K., Carrascosa, L.G., Sánchez del Río, J., et al: Silicon photonic biosensors for lab-on-a-chip applications, Adv. Opt. Technol., 2008, 2008, pp. 16, doi:10.1155/2008/383927.
    6. 6)
      • 6. Armani, A.M., Kulkarni, R.P., Fraser, S.E., et al: Label-free, single-molecule detection with optical microcavities, Science, 2007, 317, (5839), pp. 783787.
    7. 7)
      • 7. Chakravarty, S., Zou, Y., Lai, W.C., et al: Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon, Biosens. Bioelectron., 2012, 38, (1), pp. 170176.
    8. 8)
      • 8. Estevez, M.C., Alvarez, M., Lechuga, L.M.: Integrated optical devices for lab-on-a-chip biosensing applications, Laser Photon. Rev., 2012, 6, (4), pp. 463487.
    9. 9)
      • 9. Vollmer, F., Braun, D., Libchaber, A., et al: Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett., 2002, 80, (21), pp. 40574059.
    10. 10)
      • 10. Qavi, A.J., Bailey, R.C.: Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators, Angew. Chem. Int. Ed., 2010, 49, (27), pp. 46084611.
    11. 11)
      • 11. del Ro, J.S., Steylaerts, T., Henry, O.Y., et al: Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification, Biosens. Bioelectron., 2015, 73, pp. 130137.
    12. 12)
      • 12. Washburn, A.L., Luchansky, M.S., Bowman, A.L., et al: Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators, Anal. Chem., 2009, 82, (1), pp. 6972.
    13. 13)
      • 13. Hu, S., Zhao, Y., Qin, K., et al: Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density, ACS Photon., 2014, 1, (7), pp. 590597.
    14. 14)
      • 14. Kim, J., Cho, J., Seidler, P.M., et al: Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization, Langmuir, 2010, 26, (4), pp. 25992608.
    15. 15)
      • 15. Kirk, J.T., Fridley, G.E., Chamberlain, J.W., et al: Multiplexed inkjet functionalization of silicon photonic biosensors, Lab Chip, 2011, 11, (7), pp. 13721377.
    16. 16)
      • 16. Lange, S.A., Benes, V., Kern, D.P., et al: Microcontact printing of DNA molecules, Anal. Chem., 2004, 76, (6), pp. 16411647.
    17. 17)
      • 17. Ruiz, S.A., Chen, C.S.: Microcontact printing: a tool to pattern, Soft Matter, 2007, 3, (2), pp. 168177.
    18. 18)
      • 18. Tian, D., Song, Y., Jiang, L.: Patterning of controllable surface wettability for printing techniques, Chem. Soc. Rev., 2013, 42, (12), pp. 51845209.
    19. 19)
      • 19. Yan, L., Zhao, X.M., Whitesides, G.M.: Patterning a preformed, reactive SAM using microcontact printing, J. Am. Chem. Soc., 1998, 120, (24), pp. 61796180.
    20. 20)
      • 20. Castagna, R., Bertucci, A., Prasetyanto, E.A., et al: Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Sub- strates for Efficient Hybridization Platforms, Langmuir, 2016, 32, (13), pp. 33083313.
    21. 21)
      • 21. Elhadj, S., Singh, G., Saraf, R.F.: Optical properties of an immobilized DNA monolayer from 255 to 700 nm, Langmuir, 2004, 20, (13), pp. 55395543.
    22. 22)
      • 22. Li, Z., Luppi, G., Geiger, A., et al: Bioconjugated fluorescent zeolite L nanocrystals as labels in protein microarrays, Small, 2011, 7, (22), pp. 31933201.
    23. 23)
      • 23. Cretich, M., Sedini, V., Damin, F., et al: Coating of nitrocellulose for colorimetric DNA microarrays, Anal. Biochem., 2010, 397, (1), pp. 8488.
    24. 24)
      • 24. Okahata, Y., Kawase, M., Niikura, K., et al: Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance, Anal. Chem., 1998, 70, (7), pp. 12881296.
    25. 25)
      • 25. Özumur, E., Ahn, S., Yalçın, A., et al: Label-free microarray imaging for direct detection of DNA hybridization and single-nucleotide mismatches, Biosens. Bioelectron., 2010, 25, (7), pp. 17891795.
    26. 26)
      • 26. Gylfason, K.B., Sánchez, B., Griol, A., et al: ‘Robust hybridization of nanostructured buried integrated optical waveguide systems with on-chip fluid handling for chemical analysis’. Micro Total Analysis Systems (mu-TAS). Enschede, the Netherlands, 14–18 May 2000, 2008, pp. 399401.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0031
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address