http://iet.metastore.ingenta.com
1887

Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials

Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, attention has been given to nanocellulose produced by bacteria due to its unique properties and environmentally friendly nature when compared with plant cellulose. Bacterial nanocellulose (BNC) producing isolate was successfully isolated from rotten fruits via dilution and spread plates method. Based on the biochemical characterisation and molecular analysis of the 16S rDNA gene, the isolate was identified as Gluconacetobacter xylinus BCMZ sp. Nanocellulose productivity was confirmed by the formation of the white gelatinous layer between air/liquid surfaces when the culture was cultivated under a stationary condition at 30°C. Successful purification of nanocellulose was achieved using alkaline treatment method. The Fourier transformed infrared spectrum showed a characteristics band signature of pure nanocellulose, by displaying strong absorption peaks at 3335.36 and 2901.40 cm−1 representing carbonyl and carbon–hydrogen bonding, respectively. Morphological characteristics of the BNC were determined by scanning electron microscopy (SEM). Elemental analysis of BNC was determined by energy dispersive X-ray (SEM/EDX) analysis. The isolates BCZM showed significant nanocellulose production ability with a high degree of purity when compared with plant nanocellulose. BNC purification using 1 M NaOH solution is effective and eco-friendly with no indication of recalcitrant formation as commonly found in plant nanocellulose purification steps.

References

    1. 1)
      • 1. Brown, R.M.: ‘Cellulose structure and biosynthesis: what is in store for the 21st century?’, J. Polym. Sci. A Polym. Chem., 2004, 42, (3), pp. 487495.
    2. 2)
      • 2. Premjet, S., Premjet, D., Ohtani, Y.: ‘The effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245’, Sen-i Gakkaishi, 2007, 63, (8), pp. 193199.
    3. 3)
      • 3. Yamanaka, S., Watanabe, K., Kitamura, N., et al: ‘The structure and mechanical properties of sheets prepared from bacterial cellulose’, J. Mater. Sci., 1989, 24, (9), pp. 31413145.
    4. 4)
      • 4. Jozala, A.F., Pertile, RAN, dos Santos, C.A., et al: ‘Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media’, Appl. Microbiol. Biotechnol., 2015, 99, (3), pp. 11811190.
    5. 5)
      • 5. Krystynowicz, A., Czaja, w., Witorow-jezirska, A., et al: ‘Factors affecting the yield and properties of bacterial cellulose’, J. Ind. Microbiol. Biotechnol., 2002, 29, (4), pp. 189195.
    6. 6)
      • 6. Keshk, S.M.: ‘Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus’, Carbohydr. Polym., 2014, 99, pp. 98100.
    7. 7)
      • 7. Mohite, B.V., Patil, S.V.: ‘Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications’, J. Biomater. Sci. Polym. Ed., 2014, 25, (18), pp. 20532065.
    8. 8)
      • 8. Jain, P., Varshney, S., Srivastava, S.: ‘Synthetically modified nano-cellulose for the removal of chromium: a green nanotech perspective’, IET Nanobiotechnol., 2016, 11, (1), pp. 4551.
    9. 9)
      • 9. Zhu, H., Jia, S., Yang, H., et al: ‘Preparation and application of bacterial cellulose sphere: a novel biomaterial’, Biotechnol. Biotechnol. Equip., 2014, 25, (1), pp. 22332236.
    10. 10)
      • 10. Jozala, A.F., de Lencastre-Novaes, L.C., Lopes, A.M., et al: ‘Bacterial nanocellulose production and application: a 10-year overview’, Appl. Microbiol. Biotechnol., 2016, 100, (5), pp. 20632072.
    11. 11)
      • 11. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., et al: ‘Microbial cellulose utilization: fundamentals and biotechnology’, Microbiol. Mol. Biol. Rev., 2002, 66, (3), pp. 506577.
    12. 12)
      • 12. Guhados, G., Wan, W., Hutter, J.L.: ‘Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy’, Langmuir, 2005, 21, (14), pp. 66426646.
    13. 13)
      • 13. Young-Jung, W.: ‘Isolation and characterization of a bacterial cellulose-producing bacterium derived from the persimmon vinegar’, Afr. J. Biotechnol., 2011, 10, (72), pp. 1626716276.
    14. 14)
      • 14. Ross, P., Mayer, R., Benziman, M.: ‘Cellulose biosynthesis and function in bacteria’, Microbiol. Rev., 1991, 55, (1), pp. 3558.
    15. 15)
      • 15. Hornung, M., Ludwig, M., Gerrard, A.M., et al: ‘Optimizing the production of bacterial cellulose in surface culture: evaluation of product movement influences on the bioreaction (Part 2)’, Eng. Life Sci., 2006, 6, (6), pp. 546551.
    16. 16)
      • 16. Donini, Í.A., De salvi, DTB., Fukumoto, F.K., et al: ‘Biossíntese e recentes avanços na produção de celulose bacteriana’, Eclética Química, 2010, 35, pp. 165178.
    17. 17)
      • 17. Hestrin, S., Schramm, M.: ‘Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose’, Biochem. J., 1954, 58, (2), p. 345.
    18. 18)
      • 18. Mohammadkazemi, F., Doosthoseini, K., Azin, M.: ‘Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734)’, Cellul. Chem. Technol., 2015, 49, pp. 56.
    19. 19)
      • 19. Martinko, J.M., Madigan, M.: ‘Brock biology of microorganisms’ (Prentice Hall, Englewood Cliffs, NJ, 2005). ISBN 0-13-144329-1.
    20. 20)
      • 20. Yang, Y., Jia, J., Xing, J., et al: ‘Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26’, Carbohydr. Polym., 2013, 92, (2), pp. 20122017.
    21. 21)
      • 21. Castro, C., Zuluaga, R., Alvarez, C., et al: ‘Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus’, Carbohydr. Polym., 2012, 89, (4), pp. 10331037.
    22. 22)
      • 22. Keshk, S., Sameshima, K.: ‘Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture’, Enzyme Microb. Technol., 2006, 40, (1), pp. 48.
    23. 23)
      • 23. Keshk, S.M., Razek, T.M., Sameshima, K.: ‘Bacterial cellulose production from beet molasses’, Afr. J. Biotechnol., 2006, 5, (17), pp. 15191523.
    24. 24)
      • 24. Naz, S., Ahmad, N., Akhtar, J., et al: ‘Management of citrus waste by switching in the production of nanocellulose’, IET Nanobiotechnol., 2016, 10, (6), pp. 395399.
    25. 25)
      • 25. Hestrin, S., Schramm, M.: ‘Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum’, J. Gen. Microbiol., 1954, 11, pp. 123129.
    26. 26)
      • 26. Gea, S., Reynold, C. T., Roohpour, N., et al: ‘Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process’, Bioresour. Technol., 2011, 102, (19), pp. 91059110.
    27. 27)
      • 27. Jung, H.I., Jeong, J.H., Lee, O.M., et al: ‘Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks’, Bioresour. Technol., 2010, 101, (10), pp. 36023608.
    28. 28)
      • 28. Tyagi, N., Suresh, S.: ‘Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization’, J. Clean Prod., 2016, 112, pp. 7180.
    29. 29)
      • 29. Dworkin, M., Falkow, S., Rosenberg, E., et al: ‘The Prokaryotes: Vol. 7: proteobacteria: delta and epsilon subclasses. Deeply rooting bacteria’ (Springer Science & Business Media, 2006).
    30. 30)
      • 30. Yamada, Y., Yukphan, P., Thi Lan Vu, H., et al: ‘Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae)’, J. Gen. Appl. Microbiol., 2012, 58, (5), pp. 397404.
    31. 31)
      • 31. Kato, T., Haruki, M., Imanaka, T., et al: ‘Isolation and characterization of psychrotrophic bacteria from oil-reservoir water and oil sands’, Appl. Microbiol. Biotechnol., 2001, 55, (6), pp. 794800.
    32. 32)
      • 32. Kramer, M.F., Coen, D.M.: ‘Enzymatic amplification of DNA by PCR: standard procedures and optimization’. Curr. Protoc. Toxicol., 2001, 56, pp. A. 3C. 1A. 3C. 14.
    33. 33)
      • 33. Garnett, M.J., Edelman, E.J., Heidom, S.J., et al: ‘Systematic identification of genomic markers of drug sensitivity in cancer cells’, Nature, 2012, 483, (7391), pp. 570575.
    34. 34)
      • 34. Mohammadkazemi, F., Faria, M., Cordeiro, N.: ‘In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process’, Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 65, pp. 393399.
    35. 35)
      • 35. Paul Gatenholm, D.K.: ‘Bacterial nanocellulose as a renewable materials for medical applications’, MRS Bull., 2010, 35, pp. 208213.
    36. 36)
      • 36. Cheng, K.C., Catchmark, J.M., Demirci, A.: ‘Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property’, Cellulose, 2009, 16, (6), pp. 10331045.
    37. 37)
      • 37. Lin, N., Dufresne, A.: ‘Nanocellulose in biomedicine: current status and future prospect’, Eur. Polym. J., 2014, 59, pp. 302325.
    38. 38)
      • 38. Paximada, P., Dimitrakopoulou, E.A., Tsouko, E., et al: ‘Structural modification of bacterial cellulose fibrils under ultrasonic irradiation’, Carbohyd. Polym., 2016, 150, pp. 512.
    39. 39)
      • 39. Rajwade, J., Paknikar, K., Kumbhar, J.: ‘Applications of bacterial cellulose and its composites in biomedicine’, Appl. Microbiol. Biotechnol., 2015, 99, (6), pp. 24912511.
    40. 40)
      • 40. Chawla, P.R., Bajaj, I.B., Survase, S.A., et al: ‘Microbial cellulose: fermentative production and applications’, Food Technol. Biotechnol, 2009, 47, (2), pp. 107124.
    41. 41)
      • 41. Mohammed, M., Salmiaton, A., Azlina, W.W., et al: ‘Gasification of oil palm empty fruit bunches: a characterization and kinetic study’, Bioresour. Technol., 2012, 110, pp. 628636.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0024
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address