Your browser does not support JavaScript!

access icon free Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells

Silver nanoparticles (AgNPs) have been undeniable for its antimicrobial activity while its antitumour potential is still limited. Therefore, the present study focused on determining cytotoxic effects of AgNPs on Michigan cancer foundation-7 (MCF-7) breast cancer cells and its corresponding mechanism of cell death. Herein, the authors developed a bio-reduction method for AgNPs synthesis using actinomycetes isolated from marine soil sample. The isolated strain was identified by 16s ribotyping method and it was found to be Streptomyces atrovirens. Furthermore, the synthesised AgNPs were characterised by various bio-analytical techniques such as ultraviolet–visible spectrophotometer, atomic force microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, and X-ray diffraction. Moreover, the results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay reveals 44.51 µg of AgNPs to have profound inhibition of cancer cell growth; furthermore, the inhibition of MCF-7 breast cancer cell line was found to be dose dependent on treatment with AgNPs. Acridine orange and ethidium bromide double staining methods were performed for cell morphological analysis. The present results showed that biosynthesised AgNPs might be emerging alternative biomaterials for human breast cancer therapy.

Inspec keywords: antibacterial activity; biomedical materials; toxicology; microorganisms; atomic force microscopy; Fourier transform infrared spectra; nanoparticles; tumours; X-ray diffraction; cancer; transmission electron microscopy; reduction (chemical); visible spectra; nanofabrication; biomimetics; ultraviolet spectra; silver; nanomedicine

Other keywords: ethidium bromide double staining methods; transmission electron microscopy; MCF-7 breast cancer cell line inhibition; acridine orange; antitumour potential; ribotyping method; bioreduction method; cell death; cancer cell growth inhibition; silver nanoparticles; Fourier transform infrared spectroscopy; marine soil sample; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; time 16 s; potential anticancer activity; human breast cancer cells; Michigan cancer foundation-7 breast cancer cells; ultraviolet-visible spectrophotometer; atomic force microscopy; antimicrobial activity; cell morphological analysis; X-ray diffraction; dose dependence; bioanalytical techniques; Ag; isolated strain; biomimetic synthesis; alternative biomaterials; Streptomyces atrovirens; human breast cancer therapy; cytotoxic effects

Subjects: Specific chemical reactions; reaction mechanisms; Infrared and Raman spectra in metals; Visible and ultraviolet spectra of metals, semimetals, and alloys; Intelligent materials; Solid surface structure; Biomedical materials; Optical properties of metals and metallic alloys (thin films/low-dimensional structures); Preparation of metals and alloys (compacts, pseudoalloys); Nanotechnology applications in biomedicine; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials


    1. 1)
      • 24. Mandal, D., Bolander, M.E., Mukhopadhyay, D., et al: ‘The use of microorganisms for the formation of metal nanoparticles and their application’, Appl. Microbiol. Biotechnol., 2006, 69, (5), pp. 485492.
    2. 2)
      • 33. Sadowski, Z., Maliszewska, I., Grochowalska, B., et al: ‘Synthesis of silver nanoparticles using microorganisms’, Mater. Sci. (Poland), 2008, 26, (2), pp. 419424.
    3. 3)
      • 32. Saravanan, M., Vemu, A.K., Barik, S.K.: ‘Rapid biosynthesis of silver nanoparticles from bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens’, Colloids Surf. B, Biointerfaces, 2011, 88, (1), pp. 325331.
    4. 4)
      • 6. Merga, G., Wilson, R., Lynn, G., et al: ‘Redox catalysis on ‘naked’ silver nanoparticles’, J. Phys. Chem. C, 2007, 111, (33), pp. 1222012226.
    5. 5)
      • 11. Prakash, P., Gnanaprakasam, P., Emmanuel, R., et al: ‘Green synthesis of silver nanoparticles from leaf extract of Mimusops Elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates’, Colloids Surf. B, Biointerfaces, 2013, 108, pp. 255259.
    6. 6)
      • 31. Saravanan, M., Nanda, A.: ‘Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE’, Colloids Surf. B, Biointerfaces, 2010, 77, (2), pp. 214218.
    7. 7)
      • 29. Mosmann, T.: ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Methods, 1983, 65, (1–2), pp. 5563.
    8. 8)
      • 19. Singh, P., Kim, Y.J., Singh, H., et al: ‘Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles’, Int. J. Nanomed., 2015, 10, p. 2567.
    9. 9)
      • 2. Khalil, A.T., Ovais, M., Ullah, I., et al: ‘Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia Thea (Osbeck.) and their pharmacognostic properties’, Green Chem. Lett. Rev., 2017, 10, (4), pp. 186201.
    10. 10)
      • 37. Henglein, A.: ‘Physicochemical properties of small metal particles in solution: ‘microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition’, J. Phys. Chem., 1993, 97, (21), pp. 54575471.
    11. 11)
      • 23. Singh, P., Kim, Y.J., Yang, D.C.: ‘A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves’, Artif. Cells Nanomed. Biotechnol., 2016, 44, (8), pp. 19491957.
    12. 12)
      • 8. Oliveira, M.M., Ugarte, D., Zanchet, D., et al: ‘Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles’, J. Colloid Interface Sci., 2005, 292, (2), pp. 429435.
    13. 13)
      • 48. Ovais, M., Raza, A., Naz, S., et al: ‘Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics’, Appl. Microbiol. Biotechnol., 2017, 101, (9), pp. 35513565.
    14. 14)
      • 1. Inbakandan, D., Kumar, C., Abraham, L.S., et al: ‘Silver nanoparticles with antimicrofouling effect: a study against marine biofilm forming bacteria’, Colloids Surf. B, Biointerfaces, 2013, 111, pp. 636643.
    15. 15)
      • 42. Christensen, L., Vivekanandhan, S., Misra, M., et al: ‘Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size’, Adv. Mat. Lett., 2011, 2, (6), pp. 429434.
    16. 16)
      • 21. Reddy, B., Prasad, N.: ‘2-Deoxy-D-glucose combined with ferulic acid enhances radiation response in non-small cell lung carcinoma cells’, Open Life Sci., 2011, 6, (5), pp. 743755.
    17. 17)
      • 12. Shanmugasundaram, T., Radhakrishnan, M., Gopikrishnan, V., et al: ‘A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles’, Colloids Surf. B, Biointerfaces, 2013, 111, pp. 680687.
    18. 18)
      • 38. Gopalakrishnan, C., Ramaswamy, S., Memoriya, U.: ‘Atomic force microscopy studies of silver nanoislands synthesised from Aspergillus versicolor’, J. Scanning Probe Microsc., 2007, 2, (1–2), pp. 5862.
    19. 19)
      • 47. Satyavani, K., Gurudeeban, S., Ramanathan, T., et al: ‘Biomedical potential of silver nanoparticles synthesized from Calli cells of Citrullus colocynthis (L.) schrad’, J. Nanobiotechnol., 2011, 9, (1), p. 1.
    20. 20)
      • 25. Hall, V., O'Neill, G., Magee, J., et al: ‘Development of amplified 16s ribosomal DNA restriction analysis for identification of actinomyces species and comparison with pyrolysis-mass spectrometry and conventional biochemical tests’, J. Clin. Microbiol., 1999, 37, (7), pp. 22552261.
    21. 21)
      • 45. Singh, P., Kim, Y.J., Wang, C., et al: ‘The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications’, Artif. Cells Nanomed. Biotechnol., 2016, 44, (4), pp. 11501157.
    22. 22)
      • 15. Anwar, A., Ovais, M., Khan, A., et al: ‘Docetaxel loaded solid lipid nanoparticles: a novel drug delivery system’, IET Nanobiotechnol., 2017, 11, (6), pp. 621629.
    23. 23)
      • 18. Honary, S., Gharaei-Fathabad, E., Barabadi, H., et al: ‘Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis’, J. Nanosci. Nanotechnol., 2013, 13, (2), pp. 14271430.
    24. 24)
      • 34. Sathyavathi, R., Krishna, M.B., Rao, S.V., et al: ‘Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics’, Adv. Sci. Lett., 2010, 3, (2), pp. 138143.
    25. 25)
      • 39. Ovais, M., Khalil, A.T., Raza, A., et al: ‘Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics’, Nanomedicine, 2016, 11, (23), pp. 31573177.
    26. 26)
      • 40. Kim, K.-J., Sung, W.S., Moon, S.-K., et al: ‘Antifungal effect of silver nanoparticles on dermatophytes’, J. Microbiol. Biotechnol., 2008, 18, (8), pp. 14821484.
    27. 27)
      • 9. Ankamwar, B., Damle, C., Ahmad, A., et al: ‘Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution’, J. Nanosci. Nanotechnol., 2005, 5, (10), pp. 16651671.
    28. 28)
      • 3. Kruis, F.E., Fissan, H., Rellinghaus, B.: ‘Sintering and evaporation characteristics of gas-phase synthesis of size-selected PBS nanoparticles’, Mater. Sci. Eng. B, 2000, 69, pp. 329334.
    29. 29)
      • 44. Amin, M., Anwar, F., Janjua, M.R.S.A., et al: ‘Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against helicobacter pylori’, Int. J. Mol. Sci., 2012, 13, (8), pp. 99239941.
    30. 30)
      • 27. Felsenstein, J.: ‘Confidence limits on phylogenies: an approach using the bootstrap’, Evolution, 1985, 39, (4), pp. 783791.
    31. 31)
      • 17. Singh, P., Singh, H., Kim, Y.J., et al: ‘Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis Dc4 and their biological applications’, Enzyme Microb. Technol., 2016, 86, pp. 7583.
    32. 32)
      • 4. Mafuné, F., Kohno, J.-Y., Takeda, Y., et al: ‘Formation and size control of silver nanoparticles by laser ablation in aqueous solution’, J. Phys. Chem. B, 2000, 104, (39), pp. 91119117.
    33. 33)
      • 14. Zhou, H., Xiao, L., Luo, Y., et al: ‘Facile synthesis of monodispersed Fe2O3 nanoparticles and its cellular uptake and cytotoxicity studies’, J. Nanosci. Nanotechnol., 2013, 13, (10), pp. 65606565.
    34. 34)
      • 41. Nejad, M.S., Khatami, M., Bonjar, G.H.S.: ‘Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus’, IET Nanobiotechnol., 2016, 10, (1), pp. 3338.
    35. 35)
      • 30. Hemath Naveen, K., Kumar, G., Karthik, L., et al: ‘Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp.’, Arch. Appl. Sci. Res., 2010, 2, (6), pp. 161167.
    36. 36)
      • 43. You, C., Han, C., Wang, X., et al: ‘The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity’, Mol. Biol. Rep., 2012, 39, (9), pp. 91939201.
    37. 37)
      • 20. Shilpa, P., Sivaramakrishnan, V., Devaraj, S.N.: ‘Induction of apoptosis by methanolic extract of Rubia cordifolia Linn in Hep-2 cell line is mediated by reactive oxygen species’, Asian Pac. J. Cancer Prevent., 2012, 13, (6), pp. 27532758.
    38. 38)
      • 36. Sathiyanarayanan, G., Kiran, G.S., Selvin, J.: ‘Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17’, Colloids Surf. B, Biointerfaces, 2013, 102, pp. 1320.
    39. 39)
      • 16. Saklani, V.: ‘Microbial synthesis of silver nanoparticles: a review’, J. Biotechnol. Biomater., 2012, pp. 13.
    40. 40)
      • 7. Kasithevar, M., Saravanan, M., Prakash, P., et al: ‘Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients’, J. Interdiscip. Nanomed., 2017, 2, (2), pp. 131141.
    41. 41)
      • 28. Ribble, D., Goldstein, N.B., Norris, D.A., et al: ‘A simple technique for quantifying apoptosis in 96-well plates’, BMC Biotechnol., 2005, 5, (1), p. 12.
    42. 42)
      • 22. Prabhu, V.V., Guruvayoorappan, C.: ‘Inhibition of metastatic lung cancer in C57bl/6 Mice by marine mangrove Rhizophora apiculata’, Asian Pac. J. Cancer Prevent., 2013, 14, (3), pp. 18331840.
    43. 43)
      • 5. Wiley, B., Sun, Y., Mayers, B., et al: ‘Shape-controlled synthesis of metal nanostructures: the case of silver’, Chem. Eur. J., 2005, 11, (2), pp. 454463.
    44. 44)
      • 26. Tamura, K., Stecher, G., Peterson, D., et al: ‘MEGA6: molecular evolutionary genetics analysis version 6.0’, Mol. Biol. Evol., 2013, 30, (12), pp. 27252729.
    45. 45)
      • 46. Moaddab, S., Ahari, H., Shahbazzadeh, D., et al: ‘Toxicity study of nanosilver (nanocid?) on osteoblast cancer cell line’, Int. Nano Lett., 2011, 1, (1), p. 11.
    46. 46)
      • 13. Kim, Y., Lee, B.-G., Roh, Y.: ‘Microbial synthesis of silver nanoparticles’, J. Nanosci. Nanotechnol., 2013, 13, (6), pp. 38973900.
    47. 47)
      • 10. Huang, H., Yang, X.: ‘Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method’, Carbohydr. Res., 2004, 339, (15), pp. 26272631.
    48. 48)
      • 35. Kalimuthu, K., Babu, R.S., Venkataraman, D., et al: ‘Biosynthesis of silver nanocrystals by Bacillus licheniformis’, Colloids Surf. B, Biointerfaces, 2008, 65, (1), pp. 150153.

Related content

This is a required field
Please enter a valid email address