access icon free Silver nanoparticles biologically synthesised using tea leaf extracts and their use for extension of fruit shelf life

The biosynthesis of nanoparticles (NPs) from plant extracts is important in nanotechnology because the employed methods are environmentally friendly and cost-effective. In this study, silver NPs (AgNPs) were synthesised using Chinese tea (Oolong tea) extract. The effects of the relative content of the employed silver nitrate, the reaction temperature, the incubation time, and the tea-to-water ratio on the formation of the AgNPs were examined. The synthesised AgNPs were also analysed by UV–vis spectroscopy, dynamic light scattering, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis. The NPs were observed to be highly crystalline, approximately spherical, and 10–50 nm in diameter. They were also tested for their use in preserving the postharvest quality of cherry tomatoes, with good results obtained. The tea AgNP treatment was specifically found to reduce the weight loss of the tomatoes, as well as changes in their total soluble solids, vitamin C, and titratable acid contents. The findings of this study indicate that postharvest tea AgNP treatment affords a clean, safe, high-quality, and environmentally friendly method for extending the shelf life of fruits.

Inspec keywords: thermal analysis; nanofabrication; Fourier transform infrared spectra; silver; ultraviolet spectra; nanoparticles; visible spectra; X-ray diffraction; light scattering; transmission electron microscopy

Other keywords: Chinese tea extract; Oolong tea; incubation time; fruit shelf life; tea-water ratio; X-ray diffraction; tea leaf extracts; silver nitrate; transmission electron microscopy; thermo-gravimetric analysis; Ag; dynamic light scattering; Fourier transform infrared spectroscopy; UV-vis spectroscopy; cherry tomatoes; silver nanoparticles; reaction temperature

Subjects: Visible and ultraviolet spectra of metals, semimetals, and alloys; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Infrared and Raman spectra in metals; Other methods of nanofabrication

References

    1. 1)
      • 17. Cristiane, F., Lluís, P., Alcilene, R.M., et al: ‘Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes’, Sci. Hortic-Amsterdam, 2015, 193, pp. 249257.
    2. 2)
      • 42. Slimestad, R., Verheul, M.J.: ‘Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening’, J. Agr. Food Chem., 2005, 53, (18), pp. 72517256.
    3. 3)
      • 44. Ma, L.Y., Gan, J., Yin, N., et al: ‘Studies on Prunus salicina L. storage and preservation with natural coating preservation agents’, Food Fermentation Ind., 2004, 7, (30), pp. 135138.
    4. 4)
      • 32. Jagtap, U.B., Bapat, V.A.: ‘Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity’, Ind. Crop. Prod., 2013, 46, pp. 132137.
    5. 5)
      • 41. Cao, X.L., Liu, F.X., Jin, L.: ‘Research of nano-silver colloids prepared by microwave-assisted synthesis method and its fresh-keeping of strawberry’, Sci. Technol. Food Ind., 2014, 35, (5), pp. 327329, 364.
    6. 6)
      • 38. Pang, L.Y., Li, Y., Zhu, M.Y., et al: ‘Preservation effects of soy protein isolate (SPI)-chitosan composite film on cherry tomatoes’, Food Sci., 2009, 30, (20), pp. 426429.
    7. 7)
      • 6. Nayak, D., Pradhan, S., Ashe, S., et al: ‘Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma’, J. Colloid. Interf. Sci., 2015, 457, pp. 329338.
    8. 8)
      • 29. Cullity, B.D., Stock, S.R.: ‘Elements of X-ray diffraction’ (Prentice-Hall Press, New Jersey, 2001).
    9. 9)
      • 36. Zhao, X.R., Zhao, L., Wang, C.Y.: ‘A combination of chitosan, coating and modified atmosphere packaging for prolonging chicken meat shelf life’, Food Sci., 2009, 30, (22), pp. 354357.
    10. 10)
      • 24. Upadhyay, L.S.B., Verma, N.: ‘Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization’, Bioproc. Biosyst. Eng., 2014, 37, (11), pp. 21392148.
    11. 11)
      • 8. Gopinath, V., MubarakAli, D., Priyadarshini, S., et al: ‘Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach’, Colloid. Surface. B, 2012, 96, pp. 6974.
    12. 12)
      • 43. Adam, M.Y., Elbashir, H.A., Ahmed, A.H.R.: ‘Effect of gamma radiation on tomato quality during storage and processing’, Curr. Res. J. Biolog. Sci., 2014, 6, (1), pp. 2025.
    13. 13)
      • 14. Begum, N.A., Mondal, S., Basu, S., et al: ‘Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black tea leaf extracts’, Colloid. Surface. B, 2009, 71, (1), pp. 113118.
    14. 14)
      • 23. Bankar, A., Joshi, B., Kumar, A.R., et al: ‘Banana peel extract mediated novel route for the synthesis of silver nanoparticles’, Colloid. Surface. A, 2010, 368, (1–3), pp. 5863.
    15. 15)
      • 16. Fagunders, C., Moraes, K., Pérez-Gago, M.B., et al: ‘Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes’, Postharvest Biol. Tecnol., 2015, 109, pp. 7381.
    16. 16)
      • 31. Ajitha, B., Reddy, Y.A.K., Reddy, P.S.: ‘Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity’, Spectrochim. Acta A, 2014, 121, pp. 164172.
    17. 17)
      • 39. Wang, Z.L., Yuan, Y.D., Ge, H.Y., et al: ‘Fresh preservation effect of silver-carried chitosan coated paper on cherry tomato’, China Pulp Pap., 2016, 35, (7), pp. 3034.
    18. 18)
      • 10. Kouvaris, P., Delimitis, A., Zaspalis, V., et al: ‘Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract’, Mater. Lett., 2012, 76, pp. 1820.
    19. 19)
      • 21. Jia, J.L., Xu, H.H., Li, D.Q., et al: ‘Biosynthesis of silver and gold nanoparticles using Huangdan (Camellia sinensis) leaf extract’, Synth. React. Inorg. M, 2015, 45, (7), pp. 941946.
    20. 20)
      • 46. Tournas, V.H.: ‘Moulds and yeasts in fresh and minimally processed vegetables, and sprouts’, Int. J. Food Microbiol., 2005, 99, (1), pp. 7177.
    21. 21)
      • 18. Guerreiro, D., Madureira, J., Silva, T., et al: ‘Post-harvest treatment of cherry tomatoes by gamma radiation: microbial and physicochemical parameters evaluation’, Innov. Food Sci. Emerg., 2016, 36, pp. 19.
    22. 22)
      • 20. Cao, J.K., Jiang, W.B., Zhao, Y.M.: ‘Physiological and biochemical experiment instruction of fruits and vegetables postharvest’ (China Light Industry Press, Beijing, 2007).
    23. 23)
      • 33. Lopez de Dicastillo, C., Gomez-Estaca, J., Catala, R., et al: ‘Active antioxidant packaging films: development and effect on lipid stability of brine sardines’, Food Chem., 2012, 131, (4), pp. 13761384.
    24. 24)
      • 25. Nayak, B., Ray, A.R., Panda, A.K., et al: ‘Improved immunogenicity of biodegradable polymer particles entrapped rotavirus vaccine’, J. Biomater. Appl., 2011, 25, (5), pp. 469496.
    25. 25)
      • 37. Liu, L.P.: ‘Fresh-keeping effect of nano-silver coating on cherry tomato’, Mod. Food Sci. Technol., 2012, 28, (10), pp. 13161318.
    26. 26)
      • 28. Loo, Y.Y., Chieng, B.W., Nishibuchi, M., et al: ‘Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis’, Int. J. Nanomed., 2012, 7, pp. 42634267.
    27. 27)
      • 30. Song, J.Y., Jang, H.K., Kim, B.S.: ‘Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts’, Process Biochem., 2009, 44, (10), pp. 11331138.
    28. 28)
      • 1. Upadhyay, L., Verma, N.: ‘Recent developments and applications in plant-extract mediated synthesis of silver nanoparticles’, Anal. Lett., 2015, 48, (17), pp. 26762692.
    29. 29)
      • 12. Velusamy, P., Dasa, J., Pachaiappan, R., et al: ‘Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.)’, Ind. Crop. Prod., 2015, 66, pp. 103109.
    30. 30)
      • 13. Vilchis-Nestor, A.R., Sanchez-Mendieta, V., Camacho-Lopez, M.A., et al: ‘Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract’, Mater. Lett., 2008, 62, (17–18), pp. 31033105.
    31. 31)
      • 4. Sun, Q., Xiang, C., Li, J.W., et al: ‘Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity’, Colloid. Surface. A, 2014, 444, pp. 226231.
    32. 32)
      • 26. Shankar, S.S., Ahmad, A., Pasricha, R., et al: ‘Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes’, J. Mater. Chem., 2003, 13, pp. 18221826.
    33. 33)
      • 22. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346356.
    34. 34)
      • 9. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, (1), p. 32.
    35. 35)
      • 27. Sharma, G., Bhavesh, R., Kasariya, K., et al: ‘Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity’, J. Nanoparticle Res., 2011, 13, (7), pp. 29812988.
    36. 36)
      • 3. Christensen, L., Vivekanandhan, S., Misra, M., et al: ‘Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size’, Adv. Mat. Lett., 2011, 2, (6), pp. 429434.
    37. 37)
      • 15. Mirgorod, Y.A., Borodina, V.G.: ‘Preparation and bactericidal properties of silver nanoparticles in aqueous tea leaf extract’, Inorg. Mater., 2013, 49, (10), pp. 980983.
    38. 38)
      • 7. Park, S.H., Im, N.G., Kim, K.H., et al: ‘Extraction behaviors of caffeine and chlorophylls in supercritical decaffeination of green tea leaves’, LWT - Food Sci. Technol., 2012, 45, (1), pp. 7378.
    39. 39)
      • 11. Kathiravan, V., Ravi, S., Ashokkumar, S., et al: ‘Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities’, Spectrochim. Acta A, 2015, 139, pp. 200205.
    40. 40)
      • 40. Bordenave, N., Grelier, S., Coma, V.: ‘Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material’, Biomacromolecules, 2011, 11, (1), pp. 8896.
    41. 41)
      • 45. Sadler, G.D., Murphy, P.A.: ‘PH and titratable acidity’. inNielsen, S. (ED.): ‘Food Analysis’ (Aspen Press, Inc., Gaithersburg, 1998, 2st edn.), pp. 227238.
    42. 42)
      • 2. Cheng, F., Betts, J.W., Kelly, S.M., et al: ‘Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent’, Green Chem., 2013, 15, (4), pp. 989998.
    43. 43)
      • 5. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid. Interf. Sci., 2004, 275, (2), pp. 496502.
    44. 44)
      • 19. Prasad, T.N.V.K.V., Elumalai, E.K.: ‘Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity’, Asian Pac. J. Trop. Med., 2011, 1, (6), pp. 439442.
    45. 45)
      • 34. Carballo, T., Gil, M.V., Gomez, X., et al: ‘Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis’, Biodegradation, 2008, 19, (6), pp. 815830.
    46. 46)
      • 35. Lopez de Dicastillo, C., Nerin, C., Alfaro, P., et al: ‘Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract’, J. Agr. Food Chem., 2011, 59, pp. 78327840.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0207
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading