Silver nanoparticles biologically synthesised using tea leaf extracts and their use for extension of fruit shelf life

Silver nanoparticles biologically synthesised using tea leaf extracts and their use for extension of fruit shelf life

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The biosynthesis of nanoparticles (NPs) from plant extracts is important in nanotechnology because the employed methods are environmentally friendly and cost-effective. In this study, silver NPs (AgNPs) were synthesised using Chinese tea (Oolong tea) extract. The effects of the relative content of the employed silver nitrate, the reaction temperature, the incubation time, and the tea-to-water ratio on the formation of the AgNPs were examined. The synthesised AgNPs were also analysed by UV–vis spectroscopy, dynamic light scattering, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis. The NPs were observed to be highly crystalline, approximately spherical, and 10–50 nm in diameter. They were also tested for their use in preserving the postharvest quality of cherry tomatoes, with good results obtained. The tea AgNP treatment was specifically found to reduce the weight loss of the tomatoes, as well as changes in their total soluble solids, vitamin C, and titratable acid contents. The findings of this study indicate that postharvest tea AgNP treatment affords a clean, safe, high-quality, and environmentally friendly method for extending the shelf life of fruits.


    1. 1)
      • 1. Upadhyay, L., Verma, N.: ‘Recent developments and applications in plant-extract mediated synthesis of silver nanoparticles’, Anal. Lett., 2015, 48, (17), pp. 26762692.
    2. 2)
      • 2. Cheng, F., Betts, J.W., Kelly, S.M., et al: ‘Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent’, Green Chem., 2013, 15, (4), pp. 989998.
    3. 3)
      • 3. Christensen, L., Vivekanandhan, S., Misra, M., et al: ‘Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size’, Adv. Mat. Lett., 2011, 2, (6), pp. 429434.
    4. 4)
      • 4. Sun, Q., Xiang, C., Li, J.W., et al: ‘Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity’, Colloid. Surface. A, 2014, 444, pp. 226231.
    5. 5)
      • 5. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid. Interf. Sci., 2004, 275, (2), pp. 496502.
    6. 6)
      • 6. Nayak, D., Pradhan, S., Ashe, S., et al: ‘Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma’, J. Colloid. Interf. Sci., 2015, 457, pp. 329338.
    7. 7)
      • 7. Park, S.H., Im, N.G., Kim, K.H., et al: ‘Extraction behaviors of caffeine and chlorophylls in supercritical decaffeination of green tea leaves’, LWT - Food Sci. Technol., 2012, 45, (1), pp. 7378.
    8. 8)
      • 8. Gopinath, V., MubarakAli, D., Priyadarshini, S., et al: ‘Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach’, Colloid. Surface. B, 2012, 96, pp. 6974.
    9. 9)
      • 9. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, (1), p. 32.
    10. 10)
      • 10. Kouvaris, P., Delimitis, A., Zaspalis, V., et al: ‘Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract’, Mater. Lett., 2012, 76, pp. 1820.
    11. 11)
      • 11. Kathiravan, V., Ravi, S., Ashokkumar, S., et al: ‘Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities’, Spectrochim. Acta A, 2015, 139, pp. 200205.
    12. 12)
      • 12. Velusamy, P., Dasa, J., Pachaiappan, R., et al: ‘Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.)’, Ind. Crop. Prod., 2015, 66, pp. 103109.
    13. 13)
      • 13. Vilchis-Nestor, A.R., Sanchez-Mendieta, V., Camacho-Lopez, M.A., et al: ‘Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract’, Mater. Lett., 2008, 62, (17–18), pp. 31033105.
    14. 14)
      • 14. Begum, N.A., Mondal, S., Basu, S., et al: ‘Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black tea leaf extracts’, Colloid. Surface. B, 2009, 71, (1), pp. 113118.
    15. 15)
      • 15. Mirgorod, Y.A., Borodina, V.G.: ‘Preparation and bactericidal properties of silver nanoparticles in aqueous tea leaf extract’, Inorg. Mater., 2013, 49, (10), pp. 980983.
    16. 16)
      • 16. Fagunders, C., Moraes, K., Pérez-Gago, M.B., et al: ‘Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes’, Postharvest Biol. Tecnol., 2015, 109, pp. 7381.
    17. 17)
      • 17. Cristiane, F., Lluís, P., Alcilene, R.M., et al: ‘Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes’, Sci. Hortic-Amsterdam, 2015, 193, pp. 249257.
    18. 18)
      • 18. Guerreiro, D., Madureira, J., Silva, T., et al: ‘Post-harvest treatment of cherry tomatoes by gamma radiation: microbial and physicochemical parameters evaluation’, Innov. Food Sci. Emerg., 2016, 36, pp. 19.
    19. 19)
      • 19. Prasad, T.N.V.K.V., Elumalai, E.K.: ‘Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity’, Asian Pac. J. Trop. Med., 2011, 1, (6), pp. 439442.
    20. 20)
      • 20. Cao, J.K., Jiang, W.B., Zhao, Y.M.: ‘Physiological and biochemical experiment instruction of fruits and vegetables postharvest’ (China Light Industry Press, Beijing, 2007).
    21. 21)
      • 21. Jia, J.L., Xu, H.H., Li, D.Q., et al: ‘Biosynthesis of silver and gold nanoparticles using Huangdan (Camellia sinensis) leaf extract’, Synth. React. Inorg. M, 2015, 45, (7), pp. 941946.
    22. 22)
      • 22. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346356.
    23. 23)
      • 23. Bankar, A., Joshi, B., Kumar, A.R., et al: ‘Banana peel extract mediated novel route for the synthesis of silver nanoparticles’, Colloid. Surface. A, 2010, 368, (1–3), pp. 5863.
    24. 24)
      • 24. Upadhyay, L.S.B., Verma, N.: ‘Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization’, Bioproc. Biosyst. Eng., 2014, 37, (11), pp. 21392148.
    25. 25)
      • 25. Nayak, B., Ray, A.R., Panda, A.K., et al: ‘Improved immunogenicity of biodegradable polymer particles entrapped rotavirus vaccine’, J. Biomater. Appl., 2011, 25, (5), pp. 469496.
    26. 26)
      • 26. Shankar, S.S., Ahmad, A., Pasricha, R., et al: ‘Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes’, J. Mater. Chem., 2003, 13, pp. 18221826.
    27. 27)
      • 27. Sharma, G., Bhavesh, R., Kasariya, K., et al: ‘Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity’, J. Nanoparticle Res., 2011, 13, (7), pp. 29812988.
    28. 28)
      • 28. Loo, Y.Y., Chieng, B.W., Nishibuchi, M., et al: ‘Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis’, Int. J. Nanomed., 2012, 7, pp. 42634267.
    29. 29)
      • 29. Cullity, B.D., Stock, S.R.: ‘Elements of X-ray diffraction’ (Prentice-Hall Press, New Jersey, 2001).
    30. 30)
      • 30. Song, J.Y., Jang, H.K., Kim, B.S.: ‘Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts’, Process Biochem., 2009, 44, (10), pp. 11331138.
    31. 31)
      • 31. Ajitha, B., Reddy, Y.A.K., Reddy, P.S.: ‘Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity’, Spectrochim. Acta A, 2014, 121, pp. 164172.
    32. 32)
      • 32. Jagtap, U.B., Bapat, V.A.: ‘Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity’, Ind. Crop. Prod., 2013, 46, pp. 132137.
    33. 33)
      • 33. Lopez de Dicastillo, C., Gomez-Estaca, J., Catala, R., et al: ‘Active antioxidant packaging films: development and effect on lipid stability of brine sardines’, Food Chem., 2012, 131, (4), pp. 13761384.
    34. 34)
      • 34. Carballo, T., Gil, M.V., Gomez, X., et al: ‘Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis’, Biodegradation, 2008, 19, (6), pp. 815830.
    35. 35)
      • 35. Lopez de Dicastillo, C., Nerin, C., Alfaro, P., et al: ‘Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract’, J. Agr. Food Chem., 2011, 59, pp. 78327840.
    36. 36)
      • 36. Zhao, X.R., Zhao, L., Wang, C.Y.: ‘A combination of chitosan, coating and modified atmosphere packaging for prolonging chicken meat shelf life’, Food Sci., 2009, 30, (22), pp. 354357.
    37. 37)
      • 37. Liu, L.P.: ‘Fresh-keeping effect of nano-silver coating on cherry tomato’, Mod. Food Sci. Technol., 2012, 28, (10), pp. 13161318.
    38. 38)
      • 38. Pang, L.Y., Li, Y., Zhu, M.Y., et al: ‘Preservation effects of soy protein isolate (SPI)-chitosan composite film on cherry tomatoes’, Food Sci., 2009, 30, (20), pp. 426429.
    39. 39)
      • 39. Wang, Z.L., Yuan, Y.D., Ge, H.Y., et al: ‘Fresh preservation effect of silver-carried chitosan coated paper on cherry tomato’, China Pulp Pap., 2016, 35, (7), pp. 3034.
    40. 40)
      • 40. Bordenave, N., Grelier, S., Coma, V.: ‘Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material’, Biomacromolecules, 2011, 11, (1), pp. 8896.
    41. 41)
      • 41. Cao, X.L., Liu, F.X., Jin, L.: ‘Research of nano-silver colloids prepared by microwave-assisted synthesis method and its fresh-keeping of strawberry’, Sci. Technol. Food Ind., 2014, 35, (5), pp. 327329, 364.
    42. 42)
      • 42. Slimestad, R., Verheul, M.J.: ‘Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening’, J. Agr. Food Chem., 2005, 53, (18), pp. 72517256.
    43. 43)
      • 43. Adam, M.Y., Elbashir, H.A., Ahmed, A.H.R.: ‘Effect of gamma radiation on tomato quality during storage and processing’, Curr. Res. J. Biolog. Sci., 2014, 6, (1), pp. 2025.
    44. 44)
      • 44. Ma, L.Y., Gan, J., Yin, N., et al: ‘Studies on Prunus salicina L. storage and preservation with natural coating preservation agents’, Food Fermentation Ind., 2004, 7, (30), pp. 135138.
    45. 45)
      • 45. Sadler, G.D., Murphy, P.A.: ‘PH and titratable acidity’. inNielsen, S. (ED.): ‘Food Analysis’ (Aspen Press, Inc., Gaithersburg, 1998, 2st edn.), pp. 227238.
    46. 46)
      • 46. Tournas, V.H.: ‘Moulds and yeasts in fresh and minimally processed vegetables, and sprouts’, Int. J. Food Microbiol., 2005, 99, (1), pp. 7177.

Related content

This is a required field
Please enter a valid email address