access icon free Bacterial detection based on polymerase chain reaction and microbead dielectrophoresis characteristics

In this study, an electrical DNA detection method was applied to bacterial detection. DNA was extracted from bacteria and amplified by polymerase chain reaction. The microbeads were labelled with amplicons, altering their surface conductance and therefore their dielectrophoresis characteristics. Amplicon-labelled microbeads could thus be trapped within a high-strength electric field, where they formed a pearl chain between the electrodes, resulting in an increased conductance between the electrodes. This method reduces the amplicon detection time from 1–2 h to 15 min, compared with the conventional method. The presented method realised quantitative detection of specific bacteria at concentrations above 1 × 105 and 2.4 × 104 CFU/ml for bacterial solutions with and without other bacterial presence, respectively.

Inspec keywords: bioMEMS; electrochemical electrodes; electrophoresis; molecular biophysics; surface conductivity; DNA; microorganisms; electrochemical sensors; biosensors; microsensors; enzymes; bioelectric phenomena; biochemistry

Other keywords: electrodes; amplicon detection time; pearl chain; amplicon-labelled microbeads; surface conductance; high-strength electric field; bacterial detection; bacterial solutions; electrical DNA detection; microbead dielectrophoresis characteristics; quantitative detection; polymerase chain reaction; time 15 min to 2 h

Subjects: Biosensors; Biosensors; Bioelectricity; Microsensors and nanosensors; Fabrication of MEMS and NEMS devices; Electrochemical analytical methods; Physical chemistry of biomolecular solutions and condensed states; Biological engineering and techniques; Electrochemistry and electrophoresis; Chemical sensors; Micromechanical and nanomechanical devices and systems; Chemical sensors; Biomolecular interactions, charge transfer complexes; Chemical variables measurement; Sensing and detecting devices; Biomolecular structure, configuration, conformation, and active sites

References

    1. 1)
      • 11. Bélanger, S.D., Boissinot, M., Ménard, C., et al: ‘Rapid detection of Shiga toxin-producing bacteria in feces by multiplex PCR with molecular beacons on the smart cycler’, J. Clin. Microbiol., 2002, 40, (4), pp. 14361440.
    2. 2)
      • 9. Sun, W., Khosravi, F., Albrechtsen, H., et al: ‘Comparison of ATP and in vivo bioluminescence for assessing the efficiency of immunomagnetic sorbents for live Escherichia coli O157:H7 cells’, J. Appl. Microbiol., 2002, 96, (6), pp. 10211027.
    3. 3)
      • 6. Suehiro, J., Yatsunami, R., Hamada, R., et al: ‘Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method’, J. Phys. D, Appl. Phys., 1999, 32, (2), pp. 28142820.
    4. 4)
      • 10. Bayardelle, P., Zafarullah, M.: ‘Development of oligonucleotide primers for the specific PCR-based detection of the most frequent Enterobacteriaceae species DNA using wec gene templates’, Can. J. Microbiol., 2002, 48, (2), pp. 113113.
    5. 5)
      • 7. Werber, D., Fruth, A., Liesegang, A., et al: ‘A Multistate outbreak of shiga toxin-producing Escherichia coli O26:H11 infections in Germany, detected by molecular subtyping surveillance’, Infect. Dis., 2002, 186, (3), pp. 419422.
    6. 6)
      • 22. Louie, M., De Azavedo, J., Clarke, R., et al: ‘Sequence heterogeneity of the eae gene and detection of verotoxin-producing Escherichia coli using serotype-specific primers’, Epidemiol. Infect., 1994, 112, (3), pp. 449461.
    7. 7)
      • 5. Nakano, M., Ding, Z., Kasahara, H., et al: ‘Rapid microbead-based DNA detection using dielectrophoresis and impedance measurement’, Europhys. Lett., 2014, 108, (2), p. 28003(5).
    8. 8)
      • 8. Barkocy-Gallagher, G.A., Berry, E.D., Rivera-Betancourt, M., et al: ‘Development of methods for the recovery of Escherichia coli O157:H7 and Salmonella from beef carcass sponge samples and bovine fecal and hide samples’, J. Food Prot., 2002, 65, (10), pp. 15271534.
    9. 9)
      • 15. Zhou, X., Markx, G.H., Pethig, R.: ‘Effect of biocide concentration on electrorotation spectra of yeast cells’, BBA Biomembr., 1996, 1218, (1), pp. 6064.
    10. 10)
      • 3. Hamdi, F.S., Français, O., Subra, F., et al: ‘Microarray of non-connected gold pads used as high density electric traps for parallelized pairing and fusion of cells’, Biomicrofluidics, 2013, 7, (4), p. 044101(14).
    11. 11)
      • 16. Ermolina, I., Morgan, H.: ‘The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis’, J. Colloid Interface Sci., 2005, 285, (1), pp. 419428.
    12. 12)
      • 13. Mullis, K., Faloona, F., Scharf, S., et al: ‘Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction’. Cold Spring Harbor Symp., 1986, vol. 51, no. 1, pp. 263273.
    13. 13)
      • 20. Yang, X., Cheng, H., Chen, L., et al: ‘A duplex SYBR Green I real-time quantitative PCR assay for detecting Escherichia coli O157:H7’, Genet. Mol. Res., 2013, 12, (4), pp. 48364845.
    14. 14)
      • 23. Arthur, T.M., Bosilevac, J.M., Nou, X., et al: ‘Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beef’, J. Food Prot., 2005, 68, (8), pp. 15661574.
    15. 15)
      • 17. Suehiro, J., Shutou, M., Hatano, T., et al: ‘High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization’, Sens. Actuators B, Chem., 2003, 96, (1), pp. 144151.
    16. 16)
      • 25. Janda, J.M., Abbott, S.L.: ‘16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls’, J. Clin. Microbiol., 2007, 45, (9), pp. 27612764.
    17. 17)
      • 4. Washizu, M., Kurosawa, O.: ‘Electrostatic manipulation of DNA in microfabricated structures’, IEEE Trans. Ind. Appl., 1990, 26, (6), pp. 11651172.
    18. 18)
      • 19. Tiedje, J.M., Loeffler, F.E.S., Li, J.: ‘16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species’, Appl. Environ. Microbiol., 2000, 66, (4), pp. 13691374.
    19. 19)
      • 24. Holmberg, A., Blomstergren, A., Nord, O., et al: ‘The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures’, Electrophoresis, 2005, 26, (3), pp. 501510.
    20. 20)
      • 18. Nakano, M., Hisajima, T., Mao, L., et al: ‘Electrical detection of norovirus capsid using dielectrophoretic impedance measurement method’, IEEE Sens., Taipei, Taiwan, Oct 2012, pp. 14.
    21. 21)
      • 1. Jubery, T.Z., Srivastava, S.K., Dutta, P.: ‘Dielectrophoretic separation of bioparticles in microdevices: a review’, Electrophoresis, 2014, 35, (5), pp. 691713.
    22. 22)
      • 14. Jones, T.B.: ‘Electromechanics of particles’ (Cambridge University Press, Cambridge, UK, 1995).
    23. 23)
      • 12. Saxena, T., Kaushik, P., Mohan, M.: ‘Prevalence of E. coli O157:H7 in water sources: an overview on associated diseases, outbreaks and detection methods’, Microbiol. Infect. Dis., 2015, 82, (3), pp. 249264.
    24. 24)
      • 2. Zhu, K., Kaprelyants, A.S., Salina, E.G., et al: ‘Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy’, Biomicrofluidics, 2010, 4, (2), p. 022810(13).
    25. 25)
      • 21. Fu, Z., Rogelj, S., Kieft, T.L.: ‘Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR’, Int. J. Food Microbiol., 2005, 99, (1), pp. 4757.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0186
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading