Evaluation of betamethasone sodium phosphate loaded chitosan nanoparticles for anti-rheumatoid activity

Evaluation of betamethasone sodium phosphate loaded chitosan nanoparticles for anti-rheumatoid activity

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanocarriers, in various forms, have the possibility of providing endless opportunities in the area of drug delivery. The purpose of this study was formulation and evaluation of betamethasone sodium phosphate (BSP) loaded chitosan nanoparticles (CNPs) using cross-linked chitosan malic acid derivative for better therapeutic effect. The prepared BSP loaded CNPs formulations were characterised for photon correlation spectroscopy, zeta potential, transmission electron microscopy, in-vitro release kinetics and in-vivo toxicity studies. Mean particle diameter of BSP loaded CNPs was about 130 nm with spherical morphology. The in-vitro drug release study of BSP loaded CNPs showed sustained drug release for 48 h and drug release was found to follow zero order. The biochemical, haematology and histopathology reports of in-vivo toxicity studies revealed that BSP loaded CNPs do not exhibit any toxic effect on vital organs and could be safe. The developed BSP loaded CNPs are found to be safer, and used for the treatments of highly prevalent and chronic disease like rheumatoid arthritis.


    1. 1)
      • 1. Alamanos, Y., Voulgari, P.V., Drosos, A.A.: ‘Incidence and prevalence of rheumatoid arthritis based on the 1987 American college of rheumatology criteria: a systematic review’, Semin. Arthritis Rheum., 2006, 36, pp. 182188.
    2. 2)
      • 2. Higaki, M., Ishihara, T., Izumo, N., et al: ‘Treatment of experimental arthritis with poly (D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate’, Ann. Rheum. Dis., 2005, 64, (8), pp. 11321136.
    3. 3)
      • 3. Allen, T.M., Cullis, P.R.: ‘Drug delivery systems: entering the mainstream’, Science, 2004, 303, pp. 18181822.
    4. 4)
      • 4. Wagner, V., Dullaart, A., Bock, A.K., et al: ‘The emerging nanomedicine landscape’, Nat. Biotechnol., 2006, 24, pp. 12111217.
    5. 5)
      • 5. Farokhzad, O.C., Langer, R.: ‘Impact of nanotechnology on drug delivery’, ACS Nano, 2009, 3, pp. 1620.
    6. 6)
      • 6. Ober, C.A., Gupta, R.B.: ‘Nanoparticle technology for drug delivery’, Tech. Drug Deliv., 2011, 6, pp. 714726.
    7. 7)
      • 7. Berger, J., Reist, M., Mayer, J.M., et al: ‘Structure and interactions in covalently and ionically cross-linked chitosan hydrogels for biomedical applications’, Eur. J. Pharm. Biopharm., 2004, 57, pp. 1934.
    8. 8)
      • 8. Shimojoh, M., Fukushima, K., Kurita, K.: ‘Low-molecular-weight chitosan's derived from beta-chitin: preparation, molecular characteristics and aggregation activity’, Carbohydr. Polym., 1998, 35, pp. 223231.
    9. 9)
      • 9. Khor, E., Lim, L.Y.: ‘Implantable application of chitin and chitosan’, Biomaterials, 2003, 24, pp. 23392349.
    10. 10)
      • 10. Bodnar, M., Hartmann, J.F., Borbely, J.: ‘Preparation and characterization of chitosan-based nanoparticles’, Biomacromolecules, 2005, 6, (5), pp. 25212527.
    11. 11)
      • 11. Lakshmana Prabu, S., Shnanawaz, S., Dinesh Kumar, C.: ‘Compatibility studies between duloxetine hydrochloride and tablet excipients using thermal and non-thermal methods’, J. Pharm. Res., 2005, 7, pp. 2023.
    12. 12)
      • 12. Gelperina, S., Khalansky, A., Smirnova, Z., et al: ‘Toxicological studies of doxorubicin bound to polysorbate 80 coated poly (buty cyanoacrylate) nanoparticle in healthy rats and rats with intracranial glioblastoma’, Toxicol. Lett., 2002, 126, pp. 131141.
    13. 13)
      • 13. Lam, C., James, J., McCluskey, R., et al: ‘Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation’, Toxicol. Sci., 2004, 77, pp. 126134.
    14. 14)
      • 14. Shafie, M.A.A., Fayek, H.H.M.: ‘Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery’, J. Clin. Exp. Ophthalmol., 2013, 4, pp. 273285.
    15. 15)
      • 15. Esmaeilzadeh-Gharedaghi, E., Faramarzi, M.A., Amini, M.A., et al: ‘Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: an artificial neural networks study’, Pharm. Dev. Technol., 2012, 17, pp. 638647.
    16. 16)
      • 16. Chena, H., Yanga, W., Chena, H., et al: ‘Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan’, Colloids Surf. B, Biointerfaces, 2009, 73, pp. 212218.
    17. 17)
      • 17. Dash, S., Murthy, P.N., Nath, L., et al: ‘Kinetic modeling on drug release from controlled drug delivery systems’, Acta Poloniae Pharm. Drug Res., 2013, 67, pp. 217223.
    18. 18)
      • 18. Costa, P., Lobo, J.M.S.: ‘Modeling and comparison of dissolution profiles’, Eur. J. Pharm. Sci., 2001, 13, pp. 123133.
    19. 19)
      • 19. Ranjit, M.B., Sangita, G.: ‘Acute and subchronic (28-day) oral toxicity study in rats fed with novel surfactants’, AAPS PharmSciTech, 2004, 6, (2), pp. 716.
    20. 20)
      • 22. Oberdprster, E., Oberdprster, J.: ‘Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles’, Environ. Health Perspect., 2005, 113, pp. 823839.

Related content

This is a required field
Please enter a valid email address