http://iet.metastore.ingenta.com
1887

Fabrication challenges and perspectives on the use of carbon-electrode dielectrophoresis in sample preparation

Fabrication challenges and perspectives on the use of carbon-electrode dielectrophoresis in sample preparation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The focus of this review is to assess the current status of three-dimensional (3D) carbon-electrode dielectrophoresis (carbonDEP) and identify the challenges currently preventing it from its use in high-throughput applications such as sample preparation for diagnostics. The use of 3D electrodes over more traditional planar ones is emphasised here as a way to increase the throughput of DEP devices. Glass-like carbon electrodes are derived through the carbonisation of photoresist structures made using photolithography. These biocompatible carbon electrodes are not ideal electrical conductors but are more electrochemically stable than noble metals such as gold and platinum. They are also significantly less expensive than common electrode materials, both in terms of material cost and fabrication process. CarbonDEP has been demonstrated for the manipulation of microorganisms and biomolecules. This review is divided in three main sections: (i) carbonDEP fabrication process; (ii) applications using 3D carbonDEP; and (iii) challenges and perspectives on the use of carbonDEP for high-throughput applications.

References

    1. 1)
      • 1. Pethig, R.: ‘Dielectrophoresis: status of the theory, technology, and applications’, Biomicrofluidics, 2010, 4, (2), p. 022811.
    2. 2)
      • 2. Gagnon, Z.R.: ‘Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells’, Electrophoresis, 2011, 32, (18), pp. 24662487.
    3. 3)
      • 3. Ros, A., Hellmich, W., Regtmeier, J., et al: ‘Bioanalysis in structured microfluidic systems’, Electrophoresis, 2006, 27, (13), pp. 26512658.
    4. 4)
      • 4. Gascoyne, P., Vykoukal, J.: ‘Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments’, Proc. IEEE, 2004, 92, (1), pp. 2242.
    5. 5)
      • 5. Martinez-Duarte, R.: ‘Microfabrication technologies in dielectrophoresis applications – a review’, Electrophoresis, 2012, 33, (21), pp. 31103132.
    6. 6)
      • 6. Fitzer, E., Kochling, K.-H., Boehm, H.P., et al: ‘Recommended terminology for the description of carbon as a solid’, Pure Appl. Chem., 1995, 67, (3), pp. 473506.
    7. 7)
      • 7. Jenkins, G., Kawamura, K.: ‘Structure of glassy carbon’, Nature, 1971, 231, pp. 175176.
    8. 8)
      • 8. Park, B., Taherabadi, L., Wang, C., et al: ‘Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media’, J. Electrochem. Soc., 2005, 152, (12), pp. J136J143.
    9. 9)
      • 9. ‘Evaporation Pellets’. Available at http://www.lesker.com, accessed July 2016.
    10. 10)
      • 10. Martinez-Duarte, R., Renaud, P., Madou, M.: ‘A novel approach to dielectrophoresis using carbon electrodes’, Electrophoresis, 2011, 32, (17), pp. 23852392.
    11. 11)
      • 11. Martinez-Duarte, R.: ‘Label-free cell sorting using carbon-electrode dielectrophoresis and centrifugal microfluidics’ (University of California, Irvine, 2010).
    12. 12)
      • 12. Islam, M., Natu, R., Martinez-Duarte, R.: ‘A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks’, Microfluidics Nanofluidics, 2015, 19, (4), pp. 973985.
    13. 13)
      • 13. Martinez-Duarte, R., Gorkin, R.A., Abi-Samra, K., et al: ‘The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform’, Lab Chip, 2010, 10, (8), pp. 10301043.
    14. 14)
      • 14. Jaramillo, M.D.C., Martínez-Duarte, R., Hüttener, M., et al: ‘Increasing PCR sensitivity by removal of polymerase inhibitors in environmental samples by using dielectrophoresis.’, Biosens. Bioelectron., 2013, 43, pp. 297303.
    15. 15)
      • 15. Elitas, M., Martinez-Duarte, R., Dhar, N., et al: ‘Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations’, Lab Chip, 2014, 14, (11), pp. 18501857.
    16. 16)
      • 16. Martinez-Duarte, R., Camacho-Alanis, F., Renaud, P., et al: ‘Dielectrophoresis of lambda-DNA using 3D carbon electrodes’, Electrophoresis, 2013, 34, (7), pp. 11131122.
    17. 17)
      • 17. Islam, M., Larraga-Martinez, M.F., Natu, R., et al: ‘Enrichment of small cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis’, Biomicrofluidics, 2016, 10, pp. 033107 114.
    18. 18)
      • 18. Jaramillo, M.D.C., Torrents, E., Martinez-Duarte, R., et al: ‘On-line separation of bacterial cells by carbon-electrode dielectrophoresis’, Electrophoresis, 2010, 31, pp. 29212928.
    19. 19)
      • 19. Mernier, G., Martinez-Duarte, R., Lehal, R., et al: ‘Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D carbon electrodes in lab-on-a-chip devices’, Micromachines, 2012, 3, pp. 574581.
    20. 20)
      • 20. Alaeddini, R.: ‘Forensic implications of PCR inhibition – a review’, Forensic Sci. Int. Genet., 2012, 6, (3), pp. 297305.
    21. 21)
      • 21. Rådström, P., Knutsson, R., Wolffs, P., et al: ‘Pre-PCR processing’, 2004, 26.
    22. 22)
      • 22. Schriewer, A., Wehlmann, A., Wuertz, S.: ‘Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8’, J. Microbiol. Methods, 2011, 85, (1), pp. 1621.
    23. 23)
      • 23. Van Doorn, R., Klerks, M.M., Van Gent-Pelzer, M.P.E., et al: ‘Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays’, Appl. Environ. Microbiol., 2009, 75, (22), pp. 72537260.
    24. 24)
      • 24. Rock, C., Alum, A., Abbaszadegan, M.: ‘PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy’, Appl. Environ. Microbiol., 2010, 76, (24), pp. 81028109.
    25. 25)
      • 25. Sagova-Mareckova, M., Cermak, L., Novotna, J., et al: ‘Innovative methods for soil DNA purification tested in soils with widely differing characteristics’, Appl. Environ. Microbiol., 2008, 74, (9), pp. 29022907.
    26. 26)
      • 26. Hu, Y.J., Berndt, S.I., Gustafsson, S., et al: ‘Meta-analysis of gene-level associations for rare variants based on single-variant statistics’, Am. J. Hum. Genet., 2013, 93, (2), pp. 236248.
    27. 27)
      • 27. Braga, P.A.C., Tata, A., Gonçalves dos Santos, V., et al: ‘Bacterial identification: from the agar plate to the mass spectrometer’, RSC Adv., 2013, 3, (4), p. 994.
    28. 28)
      • 28. Bauer, M., Reinhart, K.: ‘Molecular diagnostics of sepsis – where are we today?’, Int. J. Med. Microbiol., 2010, 300, (6), pp. 411413.
    29. 29)
      • 29. Arlett, J.L., Myers, E.B., Roukes, M.L.: ‘Comparative advantages of mechanical biosensors’, Nat. Nanotechnol., 2011, 6, (4), pp. 203215.
    30. 30)
      • 30. Voldman, J., Gray, M.L., Toner, M., et al: ‘A microfabrication-based dynamic array cytometer’, Anal. Chem., 2002, 74, (16), pp. 39843990.
    31. 31)
      • 31. Wang, L., Flanagan, L.A., Jeon, N.L., et al: ‘Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry’, Lab Chip, 2007, 7, pp. 11141120.
    32. 32)
      • 32. Fernandez, R.E., Koklu, A., Mansoorifar, A., et al: ‘Platinum black electrodeposited thread based electrodes for dielectrophoretic assembly of microparticles’, Biomicrofluidics, 2016, 10, (3), p. 033101.
    33. 33)
      • 33. Kilchenmann, S.C., Rollo, E., Bianchi, E., et al: ‘Metal-coated silicon micropillars for freestanding 3D-electrode arrays in microchannels’, Sens. Actuators B, Chem., 2013, 185, pp. 713719.
    34. 34)
      • 34. Kilchenmann, S.C., Rollo, E., Maoddi, P., et al: ‘Metal-coated SU-8 structures for high-density 3-D microelectrode arrays’, J. Microelectromech. Syst., 2016, 25, (3), pp. 425431.
    35. 35)
      • 35. Puttaswamy, S.V., Xue, P., Kang, Y., et al: ‘Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices’, Biomed. Microdevices, 2015, 17, 4), doi:10.1007/s10544-014-9913-x.
    36. 36)
      • 36. Fatoyinbo, H.O., Kamchis, D., Whattingham, R., et al: ‘A high-throughput 3-D composite dielectrophoretic separator’, IEEE Trans. Biomed. Eng., 2005, 52, (7), pp. 13471349.
    37. 37)
      • 37. Park, B.Y., Madou, M.J.: ‘3-D electrode designs for flow-through dielectrophoretic systems’, Electrophoresis, 2005, 26, pp. 37453757.
    38. 38)
      • 38. Abidin, Z.Z., Downes, L., Markx, G.H.: ‘Novel electrode structures for large scale dielectrophoretic separations based on textile technology’, J. Biotechnol., 2007, 130, (2), pp. 183187.
    39. 39)
      • 39. Natu, R., Islam, M., Martinez-Duarte, R.: ‘Shrinkage analysis of carbon micro structures derived from SU-8 photoresist’, ECS Trans., 2016, 72, (1), pp. 2733.
    40. 40)
      • 40. Lu, J., Barrios, C.A., Dickson, A.R., et al: ‘Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells’, Integr. Biol., 2012, 4, (10), p. 1223.
    41. 41)
      • 41. Giogli, E., Islam, M., Martinez-Duarte, R.: ‘Fabricating suspended carbon wires using SU-8 photolithography’, ECS Trans., 2016, 72, (1), pp. 125134.
    42. 42)
      • 42. Jakobsson, O., Oh, S.S., Antfolk, M., et al: ‘Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device’, Anal. Chem., 2015, 87, (16), pp 84978502.
    43. 43)
      • 43. Hammarström, B., Nilson, B., Laurell, T., et al: ‘Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS’, Anal. Chem., 2014, 86, (21), pp. 1056010567.
    44. 44)
      • 44. Hou, H.W., Bhattacharyya, R.P., Hung, D.T., et al: ‘Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics’, Lab Chip, 2015, 15, (10), pp. 22972307.
    45. 45)
      • 45. Mach, A.J., Kim, J.H., Arshi, A., et al: ‘Automated cellular sample preparation using a centrifuge-on-a-chip’, Lab Chip, 2011, 11, (17), pp. 28272834.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0154
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address