Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fabrication challenges and perspectives on the use of carbon-electrode dielectrophoresis in sample preparation

The focus of this review is to assess the current status of three-dimensional (3D) carbon-electrode dielectrophoresis (carbonDEP) and identify the challenges currently preventing it from its use in high-throughput applications such as sample preparation for diagnostics. The use of 3D electrodes over more traditional planar ones is emphasised here as a way to increase the throughput of DEP devices. Glass-like carbon electrodes are derived through the carbonisation of photoresist structures made using photolithography. These biocompatible carbon electrodes are not ideal electrical conductors but are more electrochemically stable than noble metals such as gold and platinum. They are also significantly less expensive than common electrode materials, both in terms of material cost and fabrication process. CarbonDEP has been demonstrated for the manipulation of microorganisms and biomolecules. This review is divided in three main sections: (i) carbonDEP fabrication process; (ii) applications using 3D carbonDEP; and (iii) challenges and perspectives on the use of carbonDEP for high-throughput applications.

References

    1. 1)
      • 23. Van Doorn, R., Klerks, M.M., Van Gent-Pelzer, M.P.E., et al: ‘Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays’, Appl. Environ. Microbiol., 2009, 75, (22), pp. 72537260.
    2. 2)
      • 24. Rock, C., Alum, A., Abbaszadegan, M.: ‘PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy’, Appl. Environ. Microbiol., 2010, 76, (24), pp. 81028109.
    3. 3)
      • 35. Puttaswamy, S.V., Xue, P., Kang, Y., et al: ‘Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices’, Biomed. Microdevices, 2015, 17, 4), doi:10.1007/s10544-014-9913-x.
    4. 4)
      • 36. Fatoyinbo, H.O., Kamchis, D., Whattingham, R., et al: ‘A high-throughput 3-D composite dielectrophoretic separator’, IEEE Trans. Biomed. Eng., 2005, 52, (7), pp. 13471349.
    5. 5)
      • 39. Natu, R., Islam, M., Martinez-Duarte, R.: ‘Shrinkage analysis of carbon micro structures derived from SU-8 photoresist’, ECS Trans., 2016, 72, (1), pp. 2733.
    6. 6)
      • 42. Jakobsson, O., Oh, S.S., Antfolk, M., et al: ‘Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device’, Anal. Chem., 2015, 87, (16), pp 84978502.
    7. 7)
      • 15. Elitas, M., Martinez-Duarte, R., Dhar, N., et al: ‘Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations’, Lab Chip, 2014, 14, (11), pp. 18501857.
    8. 8)
      • 3. Ros, A., Hellmich, W., Regtmeier, J., et al: ‘Bioanalysis in structured microfluidic systems’, Electrophoresis, 2006, 27, (13), pp. 26512658.
    9. 9)
      • 6. Fitzer, E., Kochling, K.-H., Boehm, H.P., et al: ‘Recommended terminology for the description of carbon as a solid’, Pure Appl. Chem., 1995, 67, (3), pp. 473506.
    10. 10)
      • 22. Schriewer, A., Wehlmann, A., Wuertz, S.: ‘Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8’, J. Microbiol. Methods, 2011, 85, (1), pp. 1621.
    11. 11)
      • 20. Alaeddini, R.: ‘Forensic implications of PCR inhibition – a review’, Forensic Sci. Int. Genet., 2012, 6, (3), pp. 297305.
    12. 12)
      • 41. Giogli, E., Islam, M., Martinez-Duarte, R.: ‘Fabricating suspended carbon wires using SU-8 photolithography’, ECS Trans., 2016, 72, (1), pp. 125134.
    13. 13)
      • 29. Arlett, J.L., Myers, E.B., Roukes, M.L.: ‘Comparative advantages of mechanical biosensors’, Nat. Nanotechnol., 2011, 6, (4), pp. 203215.
    14. 14)
      • 26. Hu, Y.J., Berndt, S.I., Gustafsson, S., et al: ‘Meta-analysis of gene-level associations for rare variants based on single-variant statistics’, Am. J. Hum. Genet., 2013, 93, (2), pp. 236248.
    15. 15)
      • 2. Gagnon, Z.R.: ‘Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells’, Electrophoresis, 2011, 32, (18), pp. 24662487.
    16. 16)
      • 12. Islam, M., Natu, R., Martinez-Duarte, R.: ‘A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks’, Microfluidics Nanofluidics, 2015, 19, (4), pp. 973985.
    17. 17)
      • 34. Kilchenmann, S.C., Rollo, E., Maoddi, P., et al: ‘Metal-coated SU-8 structures for high-density 3-D microelectrode arrays’, J. Microelectromech. Syst., 2016, 25, (3), pp. 425431.
    18. 18)
      • 32. Fernandez, R.E., Koklu, A., Mansoorifar, A., et al: ‘Platinum black electrodeposited thread based electrodes for dielectrophoretic assembly of microparticles’, Biomicrofluidics, 2016, 10, (3), p. 033101.
    19. 19)
      • 30. Voldman, J., Gray, M.L., Toner, M., et al: ‘A microfabrication-based dynamic array cytometer’, Anal. Chem., 2002, 74, (16), pp. 39843990.
    20. 20)
      • 25. Sagova-Mareckova, M., Cermak, L., Novotna, J., et al: ‘Innovative methods for soil DNA purification tested in soils with widely differing characteristics’, Appl. Environ. Microbiol., 2008, 74, (9), pp. 29022907.
    21. 21)
      • 27. Braga, P.A.C., Tata, A., Gonçalves dos Santos, V., et al: ‘Bacterial identification: from the agar plate to the mass spectrometer’, RSC Adv., 2013, 3, (4), p. 994.
    22. 22)
      • 44. Hou, H.W., Bhattacharyya, R.P., Hung, D.T., et al: ‘Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics’, Lab Chip, 2015, 15, (10), pp. 22972307.
    23. 23)
      • 1. Pethig, R.: ‘Dielectrophoresis: status of the theory, technology, and applications’, Biomicrofluidics, 2010, 4, (2), p. 022811.
    24. 24)
      • 18. Jaramillo, M.D.C., Torrents, E., Martinez-Duarte, R., et al: ‘On-line separation of bacterial cells by carbon-electrode dielectrophoresis’, Electrophoresis, 2010, 31, pp. 29212928.
    25. 25)
      • 16. Martinez-Duarte, R., Camacho-Alanis, F., Renaud, P., et al: ‘Dielectrophoresis of lambda-DNA using 3D carbon electrodes’, Electrophoresis, 2013, 34, (7), pp. 11131122.
    26. 26)
      • 38. Abidin, Z.Z., Downes, L., Markx, G.H.: ‘Novel electrode structures for large scale dielectrophoretic separations based on textile technology’, J. Biotechnol., 2007, 130, (2), pp. 183187.
    27. 27)
      • 17. Islam, M., Larraga-Martinez, M.F., Natu, R., et al: ‘Enrichment of small cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis’, Biomicrofluidics, 2016, 10, pp. 033107 114.
    28. 28)
      • 9. ‘Evaporation Pellets’. Available at http://www.lesker.com, accessed July 2016.
    29. 29)
      • 7. Jenkins, G., Kawamura, K.: ‘Structure of glassy carbon’, Nature, 1971, 231, pp. 175176.
    30. 30)
      • 10. Martinez-Duarte, R., Renaud, P., Madou, M.: ‘A novel approach to dielectrophoresis using carbon electrodes’, Electrophoresis, 2011, 32, (17), pp. 23852392.
    31. 31)
      • 45. Mach, A.J., Kim, J.H., Arshi, A., et al: ‘Automated cellular sample preparation using a centrifuge-on-a-chip’, Lab Chip, 2011, 11, (17), pp. 28272834.
    32. 32)
      • 40. Lu, J., Barrios, C.A., Dickson, A.R., et al: ‘Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells’, Integr. Biol., 2012, 4, (10), p. 1223.
    33. 33)
      • 4. Gascoyne, P., Vykoukal, J.: ‘Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments’, Proc. IEEE, 2004, 92, (1), pp. 2242.
    34. 34)
      • 31. Wang, L., Flanagan, L.A., Jeon, N.L., et al: ‘Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry’, Lab Chip, 2007, 7, pp. 11141120.
    35. 35)
      • 8. Park, B., Taherabadi, L., Wang, C., et al: ‘Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media’, J. Electrochem. Soc., 2005, 152, (12), pp. J136J143.
    36. 36)
      • 37. Park, B.Y., Madou, M.J.: ‘3-D electrode designs for flow-through dielectrophoretic systems’, Electrophoresis, 2005, 26, pp. 37453757.
    37. 37)
      • 11. Martinez-Duarte, R.: ‘Label-free cell sorting using carbon-electrode dielectrophoresis and centrifugal microfluidics’ (University of California, Irvine, 2010).
    38. 38)
      • 21. Rådström, P., Knutsson, R., Wolffs, P., et al: ‘Pre-PCR processing’, 2004, 26.
    39. 39)
      • 5. Martinez-Duarte, R.: ‘Microfabrication technologies in dielectrophoresis applications – a review’, Electrophoresis, 2012, 33, (21), pp. 31103132.
    40. 40)
      • 43. Hammarström, B., Nilson, B., Laurell, T., et al: ‘Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS’, Anal. Chem., 2014, 86, (21), pp. 1056010567.
    41. 41)
      • 19. Mernier, G., Martinez-Duarte, R., Lehal, R., et al: ‘Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D carbon electrodes in lab-on-a-chip devices’, Micromachines, 2012, 3, pp. 574581.
    42. 42)
      • 28. Bauer, M., Reinhart, K.: ‘Molecular diagnostics of sepsis – where are we today?’, Int. J. Med. Microbiol., 2010, 300, (6), pp. 411413.
    43. 43)
      • 13. Martinez-Duarte, R., Gorkin, R.A., Abi-Samra, K., et al: ‘The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform’, Lab Chip, 2010, 10, (8), pp. 10301043.
    44. 44)
      • 33. Kilchenmann, S.C., Rollo, E., Bianchi, E., et al: ‘Metal-coated silicon micropillars for freestanding 3D-electrode arrays in microchannels’, Sens. Actuators B, Chem., 2013, 185, pp. 713719.
    45. 45)
      • 14. Jaramillo, M.D.C., Martínez-Duarte, R., Hüttener, M., et al: ‘Increasing PCR sensitivity by removal of polymerase inhibitors in environmental samples by using dielectrophoresis.’, Biosens. Bioelectron., 2013, 43, pp. 297303.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0154
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address