http://iet.metastore.ingenta.com
1887

Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks

Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

There have been recent advances in the engineering of molecular communication (MC)-based networks for nanomedical applications. However, the integration of MC with biomaterials such as carbon nanotubes (CNTs) presents various critical research challenges. In this study, the authors envisaged integrating MC-based nanonetwork with CNTs to optimise nanonetwork performance. In neural networks, a chronic reduction in the concentration of the neurotransmitter acetylcholine (ACh) eventually leads to the development of neurodegenerative diseases; therefore, they used CNTs as a molecular switch to optimise ACh conductivity supported by artificial MC. Furthermore, MC enables communication between transmitter neurons and receiver neurons for fine-tuning the ACh release rate according to the feedback concentration of ACh. Subsequently, they proposed a min/max feedback scheme to fine-tune the expected throughput and ACh transmission efficiency. For demonstration purposes, they deduced analytical forms for the proposed schemes in terms of throughput, incurred traffic rates, and average packet delay.

References

    1. 1)
      • 1. Madani, S.Y., Naderi, N., Dissanayake, O., et al: ‘A new era of cancer treatment: carbon nanotubes as drug delivery tools’, Int. J. Nanomed., 2011, 6, pp. 29632979.
    2. 2)
      • 2. Suda, T., Moore, M., Nakano, T., et al: ‘Exploratory research on molecular communication between nanomachines’. Proc. Genetic and Evolutionary Computation Conf. (GECCO'05), June 2005, pp. 14.
    3. 3)
      • 3. Akyildiz, I.F., Brunetti, F., Blazquez, C.: ‘Nanonetwork: a new communication paradigm’, Comput. Netw., 2008, 52, pp. 22602279.
    4. 4)
      • 4. Nakano, T., Eckford, A., Haraguchi, T.: ‘Molecular communication’ (Cambridge University Press, Cambridge, UK, 2013).
    5. 5)
      • 5. Abd El-atty, S.M., Gharsseldien, Z.M., Lizos, K.A.: ‘Framework for single input single output nanonetwork-based realistic molecular communication’, IET Nanobiotechnol., 2015, 9, (6), pp. 331341.
    6. 6)
      • 6. Farsad, N., Yilmaz, H.B., Eckford, A., et al: ‘A comprehensive survey of recent advancements in molecular communication’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 18871919.
    7. 7)
      • 7. Felicetti, L., Femminella, M., Reali, G., et al: ‘Applications of molecular communications to medicine: a survey’, Nano Commun. Netw., 2016, 7, pp. 2745.
    8. 8)
      • 8. Chahibi, Y.: ‘Molecular communication for drug delivery systems: a survey’, Nano Commun. Netw., 2017, 11, pp. 90102.
    9. 9)
      • 9. Minnikanti, S., Peixoto, N.: ‘Implantable electrodes with carbon nanotube coatings’, in Marulanda, J.M. (Ed.): ‘Carbon nanotubes applications on electron devices’ (InTech, NewYork, 2011), ch. 6.
    10. 10)
      • 10. Cipollone, S.: ‘Carbon nanotubes and neurons: nanotechnology application to the nervous system’, PhD thesis, Universitá degli Studi di Trieste, 2009.
    11. 11)
      • 11. Guo, X., Small, J.P., Klare, J.E., et al: ‘Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules’, Science, 2006, 311, (5759), pp. 356359.
    12. 12)
      • 12. Qian, H., Lu, J.-Q.: ‘Molecular electronic switch using carbon nanotube electrodes’, Phys. Lett. A, 2007, 371, pp. 465468.
    13. 13)
      • 13. Abidian, M.R., Kim, D.-H., Martin, D.C.: ‘Conducting-polymer nanotubes for controlled drug release’, Adv. Mater., 2006, 18, (4), pp. 405409.
    14. 14)
      • 14. Zhang, W., Zhang, Z., Zhang, Y.: ‘The application of carbon nanotubes in target drug delivery systems for cancer therapies’, Nanoscale Res. Lett., 2011, 6, pp. 555. doi: 10.1186/1556-276X-6-555.
    15. 15)
      • 15. Malak, D., Akan, O.B.: ‘Communication theoretical understanding of intra-body nervous nanonetworks’, IEEE Commun. Mag., 2014, 52, pp. 129135.
    16. 16)
      • 16. Akan, O.B., Ramezani, H., Khan, T., et al: ‘Fundamentals of molecular information and communication science’, Proc. IEEE, 2016, 99, pp. 113.
    17. 17)
      • 17. Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., et al: ‘Acetylcholinesterase inhibitors: pharmacology and toxicology’, Curr. Neuropharmacol., 2013, 11, pp. 315335.
    18. 18)
      • 18. Zhang, Y.G., Yang, Z., Yang, Y.L.A., et al: ‘Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease’, Nanomedicine, 2010, 6, (3), pp. 427441.
    19. 19)
      • 19. Wang, J.T.-W., Al-Jamal, K.T.: ‘Functionalized carbon nanotubes: revolution in brain delivery’, Nanomedicine, 2015, 10, (17), pp. 26392642.
    20. 20)
      • 20. Abbott, N.J.: ‘Blood–brain barrier structure and function and the challenges for CNS drug delivery’, J. Inherit. Metab. Dis., 2013, 36, (3), pp. 437449.
    21. 21)
      • 21. Shityakov, S., Salvador, E., Pastorin, G., et al: ‘Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate’, Int. J. Nanomed., 2015, 10, pp. 17031713.
    22. 22)
      • 22. Kafa, H., Wang, J.T.-W., Rubio, N., et al: ‘The interaction of carbon nanotubes with an in vitro blood–brain barrier model and mouse brain in vivo’, Biomaterials, 2015, 53, pp. 437452.
    23. 23)
      • 23. John, A., Subramanian, A.P., Vellayappan, M.V., et al: ‘Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery’, Int. J. Nanomed., 2015, 10, pp. 42674277, article A312.
    24. 24)
      • 24. Tiwari, J.N., Vij, V., Kemp, K.C., et al: ‘Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules’, ACS Nano, 2016, 10, (1), pp. 4680.
    25. 25)
      • 25. Suzuki, I., Fukuda, M., Shirakawa, K., et al: ‘Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials’, Biosens. Bioelectron., 2013, 49, pp. 270275.
    26. 26)
      • 26. Lovat, V., Pantarotto, D., Lagostena, L., et al: ‘Carbon nanotube substrates boost neuronal electrical signalling’, Nano Lett., 2005, 5, pp. 11071110.
    27. 27)
      • 27. Cellot, G., Cilia, E., Cipollone, S., et al: ‘Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts’, Nat. Nanotechnol., 2009, 4, pp. 126133.
    28. 28)
      • 28. Acker, C.D., Antic, S.D.: ‘Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites’, J. Neurophysiol., 2009, 101, (3), pp. 15241541.
    29. 29)
      • 29. Brunner, J., Szabadics, J.: ‘Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling’, Nat. Commun., 2016, 7, pp. 113.
    30. 30)
      • 30. Suzuki, J., Budiman, H., Carr, T.A., et al: ‘Simulation framework for neuron-based molecular communication’, Procedia Comput. Sci., 2013, 24, pp. 103113.
    31. 31)
      • 31. Balasubramaniam, S., Boyle, N.T., Della-Chiesa, A., et al: ‘Development of artificial neuronal networks for molecular communication’, Nano Commun. Netw., 2011, 2, (2-3), pp. 150160.
    32. 32)
      • 32. Nakano, T., Okaie, Y., Vasilakos, A.V.: ‘Transmission rate control for molecular communication among biological nanomachines’, IEEE J. Sel. Area Commun., Sup. Part 2, 2013, 31, (12), pp. 835846.
    33. 33)
      • 33. Hormuzdi, S.G.: ‘Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks’, Biochim. Biophys. Acta – Biomembranes, 2004, 1662, (1-2), pp. 113137.
    34. 34)
      • 34. Galluccio, L., Palazzo, S., Enrico Santagati, G.: ‘Characterization of molecular communications amongimplantable biomedical neuro-inspired nanodevices’, Nano Commun. Netw. J., 2013, 4, pp. 5364.
    35. 35)
      • 35. Noback, C.R., Strominger, N.L., Demarest, R.J., et al: ‘The human nervous system structure and function’ (Humans Press Inc., 2005).
    36. 36)
      • 36. Francis, P.T.: ‘The interplay of neurotransmitters in Alzheimer's disease’, CNS Spectr., 2005, 10, pp. 69.
    37. 37)
      • 37. Waymire, J.C.: ‘An electronic textbook for the neuroscience’, Neuroscience (The University of Texas Medical School at Houston, Houston, USA, 1997).
    38. 38)
      • 38. Abd El-atty, S.M., Gharsseldien, Z.M.: ‘Influence of inter-nanoparticle interaction on nanonetworks-based molecular communications’, Int. J. Light Electron Opt., 2016, 127, (5), pp. 29592968.
    39. 39)
      • 39. Abd El-atty, S.M., El-Taweel, A., El-Rabaie, S.: ‘Transmission of nanoscale information-based neural communication-aware ligand–receptor interactions’, Neural Comput. Appl., accessed 10 March 2017, DOI: 10.1007/s00521-017-2936-5, pp. 114.
    40. 40)
      • 40. Pierobon, M., Akyildiz, I.F.: ‘Fundamentals of diffusion-based molecular communication in nanonetworks’, Found. Trends Netw., 2014, 8, (1-2), pp. 1147.
    41. 41)
      • 41. Sidell, F.R.: ‘Medical aspects of chemical and biological warfare’ (Borden Institute, Walter Reed Army Medical Center, New York, NY, 1997), pp. 131139.
    42. 42)
      • 42. Smart, J.L., Andrew McCammon, J.: ‘Analysis of synaptic transmission in the neuromuscular junction using’, Biophys. J., 1998, 75, pp. 16791688.
    43. 43)
      • 43. Keener, J., Sneyd, J.: ‘Mathematical physiology I: cellular physiology’ (Springer, Netherlands, 2008).
    44. 44)
      • 44. Guney, A., Atakan, B., Akan, O.B.: ‘Mobile ad hoc nanonetworks with collision-based molecular communication’, IEEE Trans. Mob. Comput., 2012, 11, (3), pp. 353366.
    45. 45)
      • 45. Bianco, A., Kostarelos, K., Partidos, C.D., et al: ‘Biomedical applications of functionalised carbon nanotubes’, Chem. Commun., 2005, 5, pp. 571577.
    46. 46)
      • 46. Webster, T.J., Waid, M.C., McKenzie, J.L., et al: ‘Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants’, IOP Nanobiotechnol., 2003, 15, (1), pp. 4854.
    47. 47)
      • 47. Vo-Dinh, T.: ‘Biomedical photonics handbook’ (CRC Press, USA, 2003), 1872pp.
    48. 48)
      • 48. Wang, Q.: ‘Atomic transportation via carbon nanotubes’, Nano Lett., 2008, 9, pp. 245249.
    49. 49)
      • 49. Pantarotto, D., Briand, J.P., Prato, M., et al: ‘Translocation of bioactive peptides across cell membranes by carbon nanotubes’, Chem. Commun., 2004, 1, pp. 1617.
    50. 50)
      • 50. Ansón-Casaos, A., Grasa, L., Pereboom, D., et al: ‘In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells’, IET Nanobiotechnol., 2016, 10, (6), pp. 374381.
    51. 51)
      • 51. Kim, K., Chen, C.-L., Truong, Q., et al: ‘A carbon nanotube synapse with dynamic logic and learning’, Adv. Mater., 2013, 25, pp. 16931698.
    52. 52)
      • 52. Engelman, H.S., MacDermott, A.B.: ‘Presynaptic ionotropic receptors and control of transmitter release’, Nat. Rev. Neurosci., 2004, 5, pp. 135145.
    53. 53)
      • 53. Credi, A., Balzani, V., Langford, S.J., et al: ‘Logic operations at the molecular level. An XOR gate based on a molecular machine’, J. Am. Chem. Soc., 1997, 119, (11), pp. 26792681.
    54. 54)
      • 54. Pearson, J.: ‘Computation of hypergeometric functions’, PhD thesis, University of Oxford, 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0150
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address