http://iet.metastore.ingenta.com
1887

Facile synthesis of silver nanoparticles mediated by polyacrylamide-reduction approach to antibacterial application

Facile synthesis of silver nanoparticles mediated by polyacrylamide-reduction approach to antibacterial application

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The current time increase in the prevalence of antibiotic resistant ‘super-bugs’ and the risks associated with food safety have become global issues. Therefore, further research is warranted to identify new and effective antimicrobial substances. Silver nanoparticles (Ag-NPs) were synthesized by autoclaving technique using, different concentrations of Ag salt (AgNO3) solution (1, 5, 10, and 25 mM). Their presence was confirmed by a surface plasmon resonance band at ∼435 nm using UV–Vis absorption spectra. The morphology of the synthesized Ag-NPs stabilized by polyacrylamide (PAM) was examined by TEM, SAED, and EDS. TEM images revealed that the synthesized Ag-NPs had an average diameter of 2.98±0.08 nm and SAED and EDS results confirmed the formation of Ag-NPs. In addition, FT-IR spectroscopy revealed that a PAM polymer matrix stabilized the Ag-NPs. The well diffusion method, was used to test, Gram positive and Gram negative bacteria were examined. Also the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were studied against Ag-NPs. The Ag-NPs exhibited strong inhibitory activity, MIC and MBC against the tested clinical bacterial isolates. These results suggest that Ag-NPs stabilized in PAM are highly effective against clinical bacterial isolates can be applied in medical fields.

References

    1. 1)
      • 1. Guozhong, C.: ‘Nanostructures & nanomaterials synthesis, properties and applications’ (Imperial College Press, London, 2003, 2004, 2nd edn.).
    2. 2)
      • 2. Kora, A.J., Beedu, S.R., Jayaraman, A.: ‘Size controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity’, Org. Med. Chem. Lett., 2012, 2, (1), pp. 217.
    3. 3)
      • 3. Shameli, K., Bin Ahmad, M., Yunus, M.W., et al: ‘Green synthesis of silver/montmorillonite/ chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity’, Int. J. Nanomed., 2010, 5, pp. 875887.
    4. 4)
      • 4. Venkatesham, M., Ayodhya, D., Madhusudhan, A., et al: ‘A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies’, Appl. Nanosci., 2014, 4, pp. 113119.
    5. 5)
      • 5. Chen, M., Wang, L.Y., Han, J.T., et al: ‘Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process’, J. Phys. Chem. B, 2006, 110, pp. 1122411231.
    6. 6)
      • 6. Chumachenko, V., Kutsevol, N., Rawiso, M., et al: ‘In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents’, Nanoscale Res. Lett., 2014, 9, pp. 164171.
    7. 7)
      • 7. Maciollek, A., Ritter, H.: ‘One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer’, Beilstein J. Nanotechnol., 2014, 5, pp. 380385.
    8. 8)
      • 8. Kutsevol, N., Chumachenko, V., Rawiso, M., et al: ‘Green synthesis of silver nanoparticles using dextran-graft-polyacrylamide as a template’, Micro Nano Lett., 2016, 11, (5), pp. 256259.
    9. 9)
      • 9. Abdel-Halim, E.S., El-Rafie, M.H., Al-Deyab, S.S.: ‘Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles’, Carbohydr. Polym., 2011, 85, (3), pp. 692697.
    10. 10)
      • 10. Ahmed, V., Kumar, J., Kumar, M., et al: ‘Silver nanoparticles encapsulated polyacrylamide nanospheres: an efficient DNA binding nanomatrix’, Int. J. Polym. Mater. Polym. Biomater., 2014, 63, pp. 471475.
    11. 11)
      • 11. Xiong, Y., Siekkinen, A.R., Wang, J., et al: ‘Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide’, J. Mater. Chem., 2007, 17, pp. 26002602.
    12. 12)
      • 12. Hebeish, A., El-Rafie, M.H., El-Sheikh, M.A., et al: ‘Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver’, J. Nanotechnol., 2013, 2013, p. 10, Article ID 201057.
    13. 13)
      • 13. Shipp, A., Lawrence, G., Gentry, R., et al: ‘Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects’, Crit. Rev. Toxicol., 2006, 36, pp. 481608.
    14. 14)
      • 14. Pennisi, M., Malaguarnera, G., Puglisi, V., et al: ‘Neurotoxicity of acrylamide in exposed workers’, Int. J. Environ. Res. Public Health, 2013, 10, pp. 38433854.
    15. 15)
      • 15. Virk-Baker, M.K., Nagy, T.R., Barnes, S., et al: ‘Dietary acrylamide and human cancer: a systematic review of literature’, Nutr. Cancer, 2014, 66, (5), pp. 774790.
    16. 16)
      • 16. Smith, E.A., Oehme, F.W.: ‘Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity’, Rev. Environ. Health, 1991, 9, (4), pp. 215228.
    17. 17)
      • 17. Exon, J.H.: ‘A review of the toxicology of acrylamide’, J. Toxicol. Environ. Health B, Crit. Rev., 2006, 9, (5), pp. 397412.
    18. 18)
      • 18. Andersen, F.A.: ‘Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics’, Int. J. Toxicol., 2005, 24, (2), pp. 2150.
    19. 19)
      • 19. Bajpai, A.K., Bundela, H.: ‘Development of poly(acrylamide) hydroxyapatite: composites as bone substitutes: study of mechanical and blood compatible behavior’, Polym. Compos., 2009, 5, (1), pp. 15321543.
    20. 20)
      • 20. Torres, A., Garedew, A., Schmolz, E., et al: ‘Calorimetric investigation of the antimicrobial action and insight into the chemical properties of ‘angelita’ honey – a product of the stingless bee Tetragonisca angustula from Colombia’, Thermochim. Acta, 2004, 415, (1), pp. 107113.
    21. 21)
      • 21. Alothyqi, N., Almalki, M., Albqa'ai, M., et al: ‘In vitro antibacterial activity of four Saudi medicinal plants’, J. Microb. Biochem. Technol., 2016, 8, pp. 083089.
    22. 22)
      • 22. Petrus, E.M., Tinakumari, S., Chai, L.C., et al: ‘A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens’, Int. Food Res. J., 2011, 18, pp. 5566.
    23. 23)
      • 23. Djoković, V., Božanić, D.K., Vodnik, V.V., et al: ‘Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers’, Phys. Chem. Interfaces Nanomater. X, 2011, 8098, pp. 116.
    24. 24)
      • 24. El-Rafie, M.H., Ahmed, H.B., Zahran, M.K.: ‘Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch’, Int. Sch. Res. Not., 2014, 1, pp. 112.
    25. 25)
      • 25. Choi, O., Deng, K.K., Kim, N.J.Jr., et al: ‘The inhibitory effects of silver nanoparticles silver ions, and silver chloride colloids on microbial growth’, Water Res., 2008, 42, (12), pp. 30663074.
    26. 26)
      • 26. Peng, S., McMahon, J.M., Schatz, G.C., et al: ‘Reversing the size-dependence of surface plasmon resonance’, Appl. Phys. Sci. J., 2010, 107, (33), pp. 1453014534.
    27. 27)
      • 27. Sowwan, M., Makharza, S., Sultan, W., et al: ‘Analysis, characterization and some properties of polyacrylamide-Ni(II) complexes’, Int. J. Phys. Sci., 2011, 6, (27), pp. 62806285.
    28. 28)
      • 28. Abdelrazek, E.M., Ibrahim, H.S.: ‘Effect of heparin calcium different concentrations on some physical properties and structure in polyacrylamide matrix’, Phys. B, 2010, 405, pp. 43394343.
    29. 29)
      • 29. Gilbert, J., Şenyuva, H.: ‘Bioactive compounds in foods’ (John Wiley & Sons, West Sussex, 2007, 2008, 2nd edn.).
    30. 30)
      • 30. Bai, J., Li, Y., Du, J., et al: ‘One-pot synthesis of polyacrylamide-gold nanocomposite’, Mater. Chem. Phys., 2007, 106, pp. 412415.
    31. 31)
      • 31. Mohan, R.M., Bigotto, S.A.: ‘FTIR and polarised Raman spectra of acrylamide and polyacrylamide’, J. Korean Phys. Soc., 1998, 32, (4), pp. 505512.
    32. 32)
      • 32. Ghorbaniazar, P., Sepehrianazar, A., Eskandani, M., et al: ‘Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique’, Adv. Pharm. Bull., 2015, 5, (2), pp. 269275.
    33. 33)
      • 33. Srivastava, S.K., Yamada, R., Ogino, C., et al: ‘Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol’, Nanoscale Res. Lett., 2013, 8, pp. 7090.
    34. 34)
      • 34. Prathna, T.C., Mathew, L., Chandrasekaran, N., et al: ‘Biomimetic synthesis of nanoparticles: science, technology & applicability’, in Mukherjee, A. (ED.): ‘Biomimetics learning from nature’ (Intechopen., 2010), vol. 1, pp. 15.
    35. 35)
      • 35. Magalhaes, A.G., Neto, M.A., Bezerra, M.N., et al: ‘Application of FTIR in the determination of acrylate content in poly(sodium acrylateco-acrylamide) superabsorbent hydrogels’, Quim. Nova, 2012, 35, (7), pp. 14641467.
    36. 36)
      • 36. Singhal, R., Sachan, S., Rai, J.P.: ‘Study of cure kinetics of polyacrylamide hydrogels by differential scanning calorimetry’, Iran. Polym. J., 2002, 11, (3), pp. 143149.
    37. 37)
      • 37. Ozeroglu, C., Sezgin, S.: ‘Polymerization of acrylamide initiated with Ce(IV)- and KMnO-mercaptosuccinic acid redox systems in acid-aqueous medium’, Express Polym. Lett., 2007, 1, (3), pp. 132141.
    38. 38)
      • 38. Yan, F., Zheng, C., Zhai, X., et al: ‘Preparation and characterization of polyacrylamide in cationic microemulsion’, J. Appl. Polym. Sci., 1998, 67, pp. 747754.
    39. 39)
      • 39. Sen, G., Pal, S.: ‘Polyacrylamide grafted carboxymethyl tamarind (CMT-g-PAM): development and application of a novel polymeric flocculant’, Macromol. Symp., 2009, 277, pp. 100111.
    40. 40)
      • 40. Chalal, S., Haddadine, N., Bouslah, N., et al: ‘Preparation of Poly(acrylic acid)/silver nanocomposite by simultaneous polymerization–reduction approach for antimicrobial application’, J. Polym. Res., 2012, 19, (24), pp. 18.
    41. 41)
      • 41. Jung, W.K., Koo, H.C., Kim, K.W., et al: ‘Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli’, Appl. Environ. Microbiol., 2008, 74, (7), pp. 21712178.
    42. 42)
      • 42. Hungund, B.S., Dhulappanavar, G.R., Ayachit, N.H.: ‘Comparative evaluation of antibacterial activity of silver nanoparticles biosynthesized using fruit juices’, J. Nanomed. Nanotechnol., 2015, 6, (2), pp. 16.
    43. 43)
      • 43. Gurunathan, S., Han, J.W., Kwon, D.N., et al: ‘Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria’, Nanoscale Res. Lett., 2014, 9, (1), pp. 9373.
    44. 44)
      • 44. Pal, S., Tak, Y.K., Song, J.M.: ‘Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli’, Appl. Environ. Microbiol., 2007, 73, (6), pp. 17121720.
    45. 45)
      • 45. Taglietti, A., Fernandez, A.D., Amato, E., et al: ‘Antibacterial activity of Glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria’, Langmuir, 2012, 28, pp. 81408148.
    46. 46)
      • 46. Panacek, A., Kvítek, L., Prucek, R., et al: ‘Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity’, J. Phys. Chem. B, 2006, 110, pp. 1624816253.
    47. 47)
      • 47. Luo, H., Gu, C., Zheng, W., et al: ‘Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres’, RSC Adv., 2015, 5, pp. 1347013477.
    48. 48)
      • 48. Shameli, K., Bin Ahmad, M., Jazayeri, S.D.: ‘Investigation of antibacterial properties silver nanoparticles prepared via green method’, Chem. Cent. J., 2012, 6, p. 73.
    49. 49)
      • 49. Jyoti, K., Baunthiyal, M., Singh, A.: ‘Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics’, J. Radiat. Res. Appl. Sci., 2016, 9, pp. 217227.
    50. 50)
      • 50. Chamakura, K., Perez-Ballestero, R., Luo, Z., et al: ‘Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants’, Colloids Surf. B Biointerfaces, 2011, 84, pp. 8896.
    51. 51)
      • 51. Yamanaka, M., Hara, K., Kudo, J.: ‘Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis’, Appl. Environ. Microbiol., 2005, 71, pp. 75897759.
    52. 52)
      • 52. Lara, H.H., Garza-Treviño, E.N., Ixtepan-Turrent, L., et al: ‘Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds’, J. Nanobiotechnol., 2011, 9, pp. 3038.
    53. 53)
      • 53. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, J. Nanotechnol., 2005, 16, pp. 23462353.
    54. 54)
      • 54. Kvitek, L., Panacek, A., Soukupova, J., et al: ‘Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)’, J. Phys. Chem. C, 2008, 112, pp. 58255834.
    55. 55)
      • 55. Matsumura, Y., Yoshikata, K., Kunisaki, S., et al: ‘Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate’, Appl. Environ. Microbiol., 2003, 69, pp. 42784281.
    56. 56)
      • 56. Song, H.Y., Ko, K.K., Oh, L.H., et al: ‘Fabrication of silver nanoparticles and their antimicrobial mechanisms’, J. Eur. Cells Mater., 2006, 11, (1), p. 58.
    57. 57)
      • 57. Feng, Q.L., Wu, J., Chen, G.Q., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2001, 52, pp. 662668.
    58. 58)
      • 58. Chernousova, S., Epple, M.: ‘Silver as antibacterial agent: ion, nanoparticle, and metal’, Angew. Chem. Int. Ed., 2013, 52, pp. 16361653.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0135
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address