Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Facile synthesis of silver nanoparticles mediated by polyacrylamide-reduction approach to antibacterial application

The current time increase in the prevalence of antibiotic resistant ‘super-bugs’ and the risks associated with food safety have become global issues. Therefore, further research is warranted to identify new and effective antimicrobial substances. Silver nanoparticles (Ag-NPs) were synthesized by autoclaving technique using, different concentrations of Ag salt (AgNO3) solution (1, 5, 10, and 25 mM). Their presence was confirmed by a surface plasmon resonance band at ∼435 nm using UV–Vis absorption spectra. The morphology of the synthesized Ag-NPs stabilized by polyacrylamide (PAM) was examined by TEM, SAED, and EDS. TEM images revealed that the synthesized Ag-NPs had an average diameter of 2.98±0.08 nm and SAED and EDS results confirmed the formation of Ag-NPs. In addition, FT-IR spectroscopy revealed that a PAM polymer matrix stabilized the Ag-NPs. The well diffusion method, was used to test, Gram positive and Gram negative bacteria were examined. Also the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were studied against Ag-NPs. The Ag-NPs exhibited strong inhibitory activity, MIC and MBC against the tested clinical bacterial isolates. These results suggest that Ag-NPs stabilized in PAM are highly effective against clinical bacterial isolates can be applied in medical fields.

References

    1. 1)
      • 56. Song, H.Y., Ko, K.K., Oh, L.H., et al: ‘Fabrication of silver nanoparticles and their antimicrobial mechanisms’, J. Eur. Cells Mater., 2006, 11, (1), p. 58.
    2. 2)
      • 9. Abdel-Halim, E.S., El-Rafie, M.H., Al-Deyab, S.S.: ‘Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles’, Carbohydr. Polym., 2011, 85, (3), pp. 692697.
    3. 3)
      • 7. Maciollek, A., Ritter, H.: ‘One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer’, Beilstein J. Nanotechnol., 2014, 5, pp. 380385.
    4. 4)
      • 32. Ghorbaniazar, P., Sepehrianazar, A., Eskandani, M., et al: ‘Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique’, Adv. Pharm. Bull., 2015, 5, (2), pp. 269275.
    5. 5)
      • 52. Lara, H.H., Garza-Treviño, E.N., Ixtepan-Turrent, L., et al: ‘Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds’, J. Nanobiotechnol., 2011, 9, pp. 3038.
    6. 6)
      • 24. El-Rafie, M.H., Ahmed, H.B., Zahran, M.K.: ‘Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch’, Int. Sch. Res. Not., 2014, 1, pp. 112.
    7. 7)
      • 51. Yamanaka, M., Hara, K., Kudo, J.: ‘Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis’, Appl. Environ. Microbiol., 2005, 71, pp. 75897759.
    8. 8)
      • 37. Ozeroglu, C., Sezgin, S.: ‘Polymerization of acrylamide initiated with Ce(IV)- and KMnO-mercaptosuccinic acid redox systems in acid-aqueous medium’, Express Polym. Lett., 2007, 1, (3), pp. 132141.
    9. 9)
      • 29. Gilbert, J., Şenyuva, H.: ‘Bioactive compounds in foods’ (John Wiley & Sons, West Sussex, 2007, 2008, 2nd edn.).
    10. 10)
      • 28. Abdelrazek, E.M., Ibrahim, H.S.: ‘Effect of heparin calcium different concentrations on some physical properties and structure in polyacrylamide matrix’, Phys. B, 2010, 405, pp. 43394343.
    11. 11)
      • 21. Alothyqi, N., Almalki, M., Albqa'ai, M., et al: ‘In vitro antibacterial activity of four Saudi medicinal plants’, J. Microb. Biochem. Technol., 2016, 8, pp. 083089.
    12. 12)
      • 19. Bajpai, A.K., Bundela, H.: ‘Development of poly(acrylamide) hydroxyapatite: composites as bone substitutes: study of mechanical and blood compatible behavior’, Polym. Compos., 2009, 5, (1), pp. 15321543.
    13. 13)
      • 41. Jung, W.K., Koo, H.C., Kim, K.W., et al: ‘Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli’, Appl. Environ. Microbiol., 2008, 74, (7), pp. 21712178.
    14. 14)
      • 30. Bai, J., Li, Y., Du, J., et al: ‘One-pot synthesis of polyacrylamide-gold nanocomposite’, Mater. Chem. Phys., 2007, 106, pp. 412415.
    15. 15)
      • 45. Taglietti, A., Fernandez, A.D., Amato, E., et al: ‘Antibacterial activity of Glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria’, Langmuir, 2012, 28, pp. 81408148.
    16. 16)
      • 2. Kora, A.J., Beedu, S.R., Jayaraman, A.: ‘Size controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity’, Org. Med. Chem. Lett., 2012, 2, (1), pp. 217.
    17. 17)
      • 4. Venkatesham, M., Ayodhya, D., Madhusudhan, A., et al: ‘A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies’, Appl. Nanosci., 2014, 4, pp. 113119.
    18. 18)
      • 22. Petrus, E.M., Tinakumari, S., Chai, L.C., et al: ‘A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens’, Int. Food Res. J., 2011, 18, pp. 5566.
    19. 19)
      • 3. Shameli, K., Bin Ahmad, M., Yunus, M.W., et al: ‘Green synthesis of silver/montmorillonite/ chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity’, Int. J. Nanomed., 2010, 5, pp. 875887.
    20. 20)
      • 31. Mohan, R.M., Bigotto, S.A.: ‘FTIR and polarised Raman spectra of acrylamide and polyacrylamide’, J. Korean Phys. Soc., 1998, 32, (4), pp. 505512.
    21. 21)
      • 15. Virk-Baker, M.K., Nagy, T.R., Barnes, S., et al: ‘Dietary acrylamide and human cancer: a systematic review of literature’, Nutr. Cancer, 2014, 66, (5), pp. 774790.
    22. 22)
      • 36. Singhal, R., Sachan, S., Rai, J.P.: ‘Study of cure kinetics of polyacrylamide hydrogels by differential scanning calorimetry’, Iran. Polym. J., 2002, 11, (3), pp. 143149.
    23. 23)
      • 57. Feng, Q.L., Wu, J., Chen, G.Q., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2001, 52, pp. 662668.
    24. 24)
      • 27. Sowwan, M., Makharza, S., Sultan, W., et al: ‘Analysis, characterization and some properties of polyacrylamide-Ni(II) complexes’, Int. J. Phys. Sci., 2011, 6, (27), pp. 62806285.
    25. 25)
      • 40. Chalal, S., Haddadine, N., Bouslah, N., et al: ‘Preparation of Poly(acrylic acid)/silver nanocomposite by simultaneous polymerization–reduction approach for antimicrobial application’, J. Polym. Res., 2012, 19, (24), pp. 18.
    26. 26)
      • 38. Yan, F., Zheng, C., Zhai, X., et al: ‘Preparation and characterization of polyacrylamide in cationic microemulsion’, J. Appl. Polym. Sci., 1998, 67, pp. 747754.
    27. 27)
      • 12. Hebeish, A., El-Rafie, M.H., El-Sheikh, M.A., et al: ‘Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver’, J. Nanotechnol., 2013, 2013, p. 10, Article ID 201057.
    28. 28)
      • 20. Torres, A., Garedew, A., Schmolz, E., et al: ‘Calorimetric investigation of the antimicrobial action and insight into the chemical properties of ‘angelita’ honey – a product of the stingless bee Tetragonisca angustula from Colombia’, Thermochim. Acta, 2004, 415, (1), pp. 107113.
    29. 29)
      • 17. Exon, J.H.: ‘A review of the toxicology of acrylamide’, J. Toxicol. Environ. Health B, Crit. Rev., 2006, 9, (5), pp. 397412.
    30. 30)
      • 33. Srivastava, S.K., Yamada, R., Ogino, C., et al: ‘Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol’, Nanoscale Res. Lett., 2013, 8, pp. 7090.
    31. 31)
      • 23. Djoković, V., Božanić, D.K., Vodnik, V.V., et al: ‘Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers’, Phys. Chem. Interfaces Nanomater. X, 2011, 8098, pp. 116.
    32. 32)
      • 46. Panacek, A., Kvítek, L., Prucek, R., et al: ‘Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity’, J. Phys. Chem. B, 2006, 110, pp. 1624816253.
    33. 33)
      • 49. Jyoti, K., Baunthiyal, M., Singh, A.: ‘Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics’, J. Radiat. Res. Appl. Sci., 2016, 9, pp. 217227.
    34. 34)
      • 39. Sen, G., Pal, S.: ‘Polyacrylamide grafted carboxymethyl tamarind (CMT-g-PAM): development and application of a novel polymeric flocculant’, Macromol. Symp., 2009, 277, pp. 100111.
    35. 35)
      • 18. Andersen, F.A.: ‘Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics’, Int. J. Toxicol., 2005, 24, (2), pp. 2150.
    36. 36)
      • 34. Prathna, T.C., Mathew, L., Chandrasekaran, N., et al: ‘Biomimetic synthesis of nanoparticles: science, technology & applicability’, in Mukherjee, A. (ED.): ‘Biomimetics learning from nature’ (Intechopen., 2010), vol. 1, pp. 15.
    37. 37)
      • 43. Gurunathan, S., Han, J.W., Kwon, D.N., et al: ‘Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria’, Nanoscale Res. Lett., 2014, 9, (1), pp. 9373.
    38. 38)
      • 1. Guozhong, C.: ‘Nanostructures & nanomaterials synthesis, properties and applications’ (Imperial College Press, London, 2003, 2004, 2nd edn.).
    39. 39)
      • 53. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, J. Nanotechnol., 2005, 16, pp. 23462353.
    40. 40)
      • 26. Peng, S., McMahon, J.M., Schatz, G.C., et al: ‘Reversing the size-dependence of surface plasmon resonance’, Appl. Phys. Sci. J., 2010, 107, (33), pp. 1453014534.
    41. 41)
      • 11. Xiong, Y., Siekkinen, A.R., Wang, J., et al: ‘Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide’, J. Mater. Chem., 2007, 17, pp. 26002602.
    42. 42)
      • 16. Smith, E.A., Oehme, F.W.: ‘Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity’, Rev. Environ. Health, 1991, 9, (4), pp. 215228.
    43. 43)
      • 25. Choi, O., Deng, K.K., Kim, N.J.Jr., et al: ‘The inhibitory effects of silver nanoparticles silver ions, and silver chloride colloids on microbial growth’, Water Res., 2008, 42, (12), pp. 30663074.
    44. 44)
      • 44. Pal, S., Tak, Y.K., Song, J.M.: ‘Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli’, Appl. Environ. Microbiol., 2007, 73, (6), pp. 17121720.
    45. 45)
      • 42. Hungund, B.S., Dhulappanavar, G.R., Ayachit, N.H.: ‘Comparative evaluation of antibacterial activity of silver nanoparticles biosynthesized using fruit juices’, J. Nanomed. Nanotechnol., 2015, 6, (2), pp. 16.
    46. 46)
      • 58. Chernousova, S., Epple, M.: ‘Silver as antibacterial agent: ion, nanoparticle, and metal’, Angew. Chem. Int. Ed., 2013, 52, pp. 16361653.
    47. 47)
      • 47. Luo, H., Gu, C., Zheng, W., et al: ‘Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres’, RSC Adv., 2015, 5, pp. 1347013477.
    48. 48)
      • 13. Shipp, A., Lawrence, G., Gentry, R., et al: ‘Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects’, Crit. Rev. Toxicol., 2006, 36, pp. 481608.
    49. 49)
      • 10. Ahmed, V., Kumar, J., Kumar, M., et al: ‘Silver nanoparticles encapsulated polyacrylamide nanospheres: an efficient DNA binding nanomatrix’, Int. J. Polym. Mater. Polym. Biomater., 2014, 63, pp. 471475.
    50. 50)
      • 14. Pennisi, M., Malaguarnera, G., Puglisi, V., et al: ‘Neurotoxicity of acrylamide in exposed workers’, Int. J. Environ. Res. Public Health, 2013, 10, pp. 38433854.
    51. 51)
      • 6. Chumachenko, V., Kutsevol, N., Rawiso, M., et al: ‘In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents’, Nanoscale Res. Lett., 2014, 9, pp. 164171.
    52. 52)
      • 8. Kutsevol, N., Chumachenko, V., Rawiso, M., et al: ‘Green synthesis of silver nanoparticles using dextran-graft-polyacrylamide as a template’, Micro Nano Lett., 2016, 11, (5), pp. 256259.
    53. 53)
      • 50. Chamakura, K., Perez-Ballestero, R., Luo, Z., et al: ‘Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants’, Colloids Surf. B Biointerfaces, 2011, 84, pp. 8896.
    54. 54)
      • 35. Magalhaes, A.G., Neto, M.A., Bezerra, M.N., et al: ‘Application of FTIR in the determination of acrylate content in poly(sodium acrylateco-acrylamide) superabsorbent hydrogels’, Quim. Nova, 2012, 35, (7), pp. 14641467.
    55. 55)
      • 5. Chen, M., Wang, L.Y., Han, J.T., et al: ‘Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process’, J. Phys. Chem. B, 2006, 110, pp. 1122411231.
    56. 56)
      • 54. Kvitek, L., Panacek, A., Soukupova, J., et al: ‘Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)’, J. Phys. Chem. C, 2008, 112, pp. 58255834.
    57. 57)
      • 48. Shameli, K., Bin Ahmad, M., Jazayeri, S.D.: ‘Investigation of antibacterial properties silver nanoparticles prepared via green method’, Chem. Cent. J., 2012, 6, p. 73.
    58. 58)
      • 55. Matsumura, Y., Yoshikata, K., Kunisaki, S., et al: ‘Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate’, Appl. Environ. Microbiol., 2003, 69, pp. 42784281.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0135
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address