Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Antioxidant and antibacterial activity evaluation of 3-hydroxybenzaldehyde: the product of thymol oxidation by a new magnetic nanocatalyst

In this study maghemite nanoparticles were synthesised, they were first coated by sodium alginate and then by chitosan. Then acetanilide was introduced to maghemite nanoparticles that were coated by alginate and chitosan. Finally a silver complex was made with acetanilide and the magnetic nanocatalyst was synthesised. This nanocatalyst was used for the oxidation of thymol, then antioxidant and antibacterial properties of the oxidation product were assessed. Characterisation of this nanocatalyst was performed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer, scanning electron microscope (SEM) and value stream mapping. Creation of the product was confirmed by FT-IR and gas chromatography-mass spectroscopy. According to SEM, the size of the nanocatalyst was in the range of 46–70 nm. 3-hydroxybenzaldehyde was obtained from the oxidation of thymol. It had antioxidant property as evident from Di (phenyl) – (2, 4, 6-trinitrophenyl) iminoazanium and the Folin–Ciocalteu method. Diffusion and dilution methods were used for the evaluation of the antibacterial activity. It was obvious from MIC that gram negative strains were more resistant than gram positive ones, and from minimum bactericidal concentration, it was obvious that Escherichia coli was the most resistant gram negative strain, and Bacillus subtilis was the most resistant gram positive strain.

References

    1. 1)
      • 19. Tseng, T.-H., Tsheng, Y.-M., Lee, Y.-J.: ‘Cytotoxicity effects of di-and tri-hydroxybenzaldehydes as a chemopreventive potential agent on tumor cells’, Toxicology, 2001, 161, (3), pp. 179187.
    2. 2)
      • 36. Esmaeili, A., Khakpoor, M.: ‘Biological activities and chemical composition of solvent extracts of stoechospermum marginatum (C. Agardh)’, Acta Biochim.Pol., 2012, 59, (4), pp. 581585.
    3. 3)
      • 20. Laurent, S., Forge, D., Port, M., et al: ‘Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications’, Chem. Rev., 2008, 108, (6), pp. 20642110.
    4. 4)
      • 12. Wight, A., Davis, M.: ‘Design and preparation of organic-inorganic hybrid catalysts’, Chem. Rev., 2002, 102, (10), pp. 35893614.
    5. 5)
      • 38. Esmaeili, A., Rustaiyan, A., Nadimi, M., et al: ‘Chemical composition and antibacterial activity of essential oils from leaves, stems and flowers of salvia reuterana boiss. grown in Iran’, Nat.Prod. Res., 2008, 22, (6), pp. 516520.
    6. 6)
      • 41. Cook, M.T., Tzortzis, G., Charalampopoulos, D., et al: ‘Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria’, Biomacromolecules, 2011, 12, (7), pp. 28342840.
    7. 7)
      • 5. Esmaeili, A., Asgari, A.: ‘In vitro release and biological activities of carum copticum essential oil (Ceo) loaded chitosan nanoparticles’, Int.J. Biol. Macromol., 2015, 81, pp. 283290.
    8. 8)
      • 10. Gamez, P., Aubel, P.G., Driessen, W.L., et al: ‘Homogeneous bio-inspired copper-catalyzed oxidation reactions’, Chem.Soc.Rev., 2001, 30, (6), pp. 376385.
    9. 9)
      • 16. Friedman, M., Henika, P.R., Mandrell, R.E.: ‘Antibacterial activities of phenolic benzaldehydes and benzoic acids against campylobacter jejuni, escherichia coli, listeria monocytogenes, and salmonella enterica’, J.Food Prot.®, 2003, 66, (10), pp. 18111821.
    10. 10)
      • 4. Wang, J., Lian, Z., Wang, H., et al: ‘Synthesis and antimicrobial activity of schiff base of chitosan and acylated chitosan’, J. Appl. Polym. Sci., 2012, 123, (6), pp. 32423247.
    11. 11)
      • 8. Finotelli, P.V., Sampaio, D., Morales, M.A., et al: ‘Ca alginate as scaffold for iron oxide nanoparticles synthesis’, Braz. J. Chem.Eng., 2008, 25, (4), pp. 759764.
    12. 12)
      • 30. Mooney, K.E., Nelson, J.A., Wagner, M.J.: ‘Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction’, Chem. Mater., 2004, 16, (16), pp. 31553161.
    13. 13)
      • 14. Nieddu, M., Rassu, G., Boatto, G., et al: ‘Improvement of thymol properties by complexation with cyclodextrins: in vitro and in vivo studies’, Carbohydrate Polym., 2014, 102, pp. 393399.
    14. 14)
      • 26. Esmaeili, A., Ghobadianpour, S.: ‘Vancomycin loaded superparamagnetic Mn Fe2O4 nanoparticles coated with pegylated chitosan to enhance antibacterial activity’, Int. J. Pharm., 2016, 501, (1), pp. 326330.
    15. 15)
      • 9. Finotelli, P.V., Da Silva, D., Sola-Penna, M., et al: ‘Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin’, Colloids Surf.B Biointerfaces, 2010, 81, (1), pp. 206211.
    16. 16)
      • 43. Bountagkidou, O.G., Ordoudi, S.A., Tsimidou, M.Z.: ‘Structure–antioxidant activity relationship study of natural hydroxybenzaldehydes using in vitro assays’, Food Res. Int., 2010, 43, (8), pp. 20142019.
    17. 17)
      • 25. Wayne, P.: ‘Performance standards for antimicrobial susceptibility testing’. Ninth informational supplement NCCLS document M100-S9. National Committee for Clinical Laboratory Standards, 2008, pp. 120126.
    18. 18)
      • 34. Zhou, J., Dong, Z., Yang, H., et al: ‘Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions’, Appl. Surf. Sci., 2013, 279, pp. 360366.
    19. 19)
      • 39. Puupponen-Pimiä, R., Nohynek, L., Meier, C., et al: ‘Antimicrobial properties of phenolic compounds from berries’, J. Appl. Microbiol., 2001, 90, (4), pp. 494507.
    20. 20)
      • 6. Esmaeili, A., Rafiee, R.: ‘Preparation and biological activity of nanocapsulated Glycyrrhiza Glabra L. Var. Glabra’, Flavour Fragrance J., 2015, 30, (1), pp. 113119.
    21. 21)
      • 32. Nishio, Y., Yamada, A., Ezaki, K., et al: ‘Preparation and magnetometric characterization of iron oxide-containing alginate/poly (Vinyl Alcohol) networks’, Polymer, 2004, 45, (21), pp. 71297136.
    22. 22)
      • 37. Esmaeili, A., Rashidi, B., Rezazadeh, S.: ‘Biological activities of various extracts and chemical composition of trigonella monantha Ca Mey. Subsp. Monantha Grown in Iran’, Iran. J. Pharm.Res., 2012, 11, (4), pp. 11271136.
    23. 23)
      • 18. Gustafson, D.L., Franz, H.R., Ueno, A.M., et al: ‘Vanillin (3-Methoxy-4-Hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-Methyl-N-Nitrosoguanidine and Mitomycin C but not 137cs Γ-radiation at the Cd59 Locus in human–hamster hybrid Al cells’, Mutagenesis, 2000, 15, (3), pp. 207213.
    24. 24)
      • 2. Walsh, P.J., Li, H., de Parrodi, C.A.: ‘A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions’, Chem. Rev., 2007, 107, (6), pp. 25032545.
    25. 25)
      • 7. Chan, L., Lee, H., Heng, P.: ‘Production of alginate microspheres by internal gelation using an emulsification method’, Int. J.Pharm., 2002, 242, (1), pp. 259262.
    26. 26)
      • 23. Okada, Y., Okada, M.: ‘Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species’, J.Agric.Food Chem., 1998, 46, (2), pp. 401406.
    27. 27)
      • 21. Liu, X., Chen, X., Li, Y., et al: ‘Preparation of superparamagnetic Fe3O4@ alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase’, ACS Appl. Mater. Interfaces, 2012, 4, (10), pp. 51695178.
    28. 28)
      • 3. Satturwar, P.M., Fulzele, S.V., Dorle, A.K.: ‘Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer’, AAPS PharmSciTech, 2003, 4, (4), pp. 434439.
    29. 29)
      • 35. Zarnegar, Z., Safari, J.: ‘Fe3O4@ chitosan nanoparticles: a valuable heterogeneous nanocatalyst for the synthesis of 2, 4, 5-trisubstituted imidazoles’, RSC Adv., 2014, 4, (40), pp. 2093220939.
    30. 30)
      • 22. Naghipour, A., Fakhri, A.: ‘Heterogeneous Fe3O4@ chitosan-schiff base Pd nanocatalyst: fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions’, Catal.Commun., 2016, 73, pp. 3945.
    31. 31)
      • 27. Chen, D.W., Hsu, Y.-H., Liao, J.-Y., et al: ‘Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured Plga/Collagen nanofibrous membranes’, Int. J. Pharm., 2012, 430, (1), pp. 335341.
    32. 32)
      • 29. Wu, Z.-G., Gao, J.-F.: ‘Synthesis of Y-FeO3 nanoparticles by homogeneous co-precipitation method’, IET Micro Nano Lett., 2012, 7, (6), pp. 533535.
    33. 33)
      • 33. Naghipour, A., Fakhri, A.: ‘Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan–schiff base complex of Cu (Ii) supported on supramagnetic Fe3O4 nanoparticles’, Environ.Chem.Lett., June 2016, 14, 2, pp 207213.
    34. 34)
      • 42. Kong, A., Wang, P., Zhang, H., et al: ‘One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance’, Appl. Catalysis A Gen., 2012, 417, pp. 183189.
    35. 35)
      • 31. Finotelli, P., Morales, M., Rocha-Leao, M., et al: ‘Magnetic studies of iron (Iii) nanoparticles in alginate polymer for drug delivery applications’, Mater.Sci.Eng. C, 2004, 24, (5), pp. 625629.
    36. 36)
      • 11. Goti, A., Cardona, F.: ‘Hydrogen peroxide in green oxidation reactions: recent catalytic processes’, in Tundo P., Esposito V:Green chemical reactions’ (Springer, 2008).
    37. 37)
      • 28. Balouiri, M., Sadiki, M., Ibnsouda, S.K.: ‘Methods for in vitro evaluating antimicrobial activity: a review’, J. Pharm. Anal., 2016, 6, (2), pp. 7179.
    38. 38)
      • 13. Cai, X., Wang, H., Zhang, Q., et al: ‘Magnetically recyclable core–shell Fe3O4@ chitosan-schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions’, J. Mol.Cat.A Chem., 2014, 383, pp. 217224.
    39. 39)
      • 17. Bortolomeazzi, R., Sebastianutto, N., Toniolo, R., et al: ‘Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, Dpph radical scavenging and oxidation potential’, Food Chem., 2007, 100, (4), pp. 14811489.
    40. 40)
      • 24. Mazzanti, G., Battinelli, L., Salvatore, G.: ‘Antimicrobial properties of the linalol-rich essential oil of hyssopus officinalis L. Var Decumbens (Lamiaceae)’, Flavour Fragrance J., 1998, 13, (5), pp. 289294.
    41. 41)
      • 1. Sheldon, R.A.: ‘Fundamentals of green chemistry: efficiency in reaction design’, Chem.Soc.Rev., 2012, 41, (4), pp. 14371451.
    42. 42)
      • 40. Burt, S.: ‘Essential oils: their antibacterial properties and potential applications in foods—a review’, Int. J food Microbiol., 2004, 94, (3), pp. 223253.
    43. 43)
      • 44. Nenadis, N., Tsimidou, M.Z.: ‘Contribution of Dft computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids’, Food Res. Int., 2012, 48, (2), pp. 538543.
    44. 44)
      • 15. Suzuki, Y., Nakamura, S., Sugiyama, K., et al: ‘Differences of superoxide production in blood leukocytes stimulated with thymol between human and non-human primates’, Life Sci., 1987, 41, (13), pp. 16591664.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0127
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0127
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address