Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential

In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

References

    1. 1)
      • 42. Dhineshbabu, N.R., Rajendran, V.: ‘Antibacterial activity of hybrid chitosan–cupric oxide nanoparticles on cotton fabric’, IET Nanobiotechnol., 2016, 10, pp. 1319.
    2. 2)
      • 5. MacDonald, A.H.: ‘Superconductivity: copper oxides get charged up’, Nature, 2001, 414, pp. 409410.
    3. 3)
      • 16. Ranjbar-Karimi, R., Bazmandegan-Shamili, A., Aslani, A., et al: ‘Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles’, Phys. B Condens. Matter, 2010, 405, pp. 30963100.
    4. 4)
      • 24. Japón-Luján, R., Luque-Rodríguez, J.M., De Castro, M.L.: ‘Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves’, J. Chromatogr. A, 2006, 1108, pp. 7682.
    5. 5)
      • 20. Jan, T., Iqbal, J., Ismail, M., et al: ‘Synthesis, physical properties and antibacterial activity of metal oxides nanostructures’, Mater. Sci. Semicond. Process., 2014, 21, pp. 154160.
    6. 6)
      • 40. Lippert, H., Brinkmeyer, R., Mülhaupt, T., et al: ‘Antimicrobial activity in sub-Arctic marine invertebrates’, Polar Biol., 2003, 26, pp. 591600.
    7. 7)
      • 21. Monteiro, D.R., Gorup, L.F., Takamiya, A.S., et al: ‘The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver’, Int. J. Antimicrob. Agents, 2009, 34, pp. 103110.
    8. 8)
      • 18. Li, Y., Yang, X.Y., Rooke, J., et al: ‘Ultralong Cu (OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance’, J. Colloid and Interface Sci., 2010, 348, pp. 303312.
    9. 9)
      • 32. Atiok, E., Bayçin, D., Bayraktar, O., et al: ‘Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibrion’, Sep. Purif. Technol., 2008, 62, pp. 342348.
    10. 10)
      • 31. Padil, V.V.T., Černík, M.: ‘Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application’, Int. J. Nanomed., 2013, 8, pp. 889898.
    11. 11)
      • 19. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    12. 12)
      • 23. Soni, M.G., Burdock, G.A., Christian, M.S., et al: ‘Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods’, Food Chem. Toxicol., 2006, 44, pp. 903915.
    13. 13)
      • 28. Maqbool, Q., Nazar, M., Naz, S., et al: ‘Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract’, Int. J. Nanomed., 2016, 11, pp. 50155025.
    14. 14)
      • 10. Grzesik, Z., Migdalska, M.: ‘On the mechanism of Cu2O oxidation at high temperatures’, Defect Diffus. Forum, 2009, 289, pp. 429436.
    15. 15)
      • 30. Das, D., Nath, B.C., Phukon, P., et al: ‘Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles’, Colloids Surfaces B Biointerfaces, 2013, 101, pp. 430433.
    16. 16)
      • 29. Akhavan, O., Ghaderi, E.: ‘Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts’, Surf. Coat. Technol., 2010, 205, pp. 219223.
    17. 17)
      • 3. Wijesundera, R.P.: ‘Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications’, Semicond. Sci. Technol., 2010, 25, p. 045015.
    18. 18)
      • 9. Li, J., Wang, S.Q., Mayer, J.W., et al: ‘Oxygen-diffusion-induced phase boundary migration in copper oxide thin films’, Phys. Rev. B, 1989, 39, p. 12367.
    19. 19)
      • 4. Yang, C., Su, X., Xiao, F., et al: ‘Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method’, Sens. Actuators B Chem., 2011, 158, pp. 299303.
    20. 20)
      • 22. Tranquada, J.M., Sternlieb, B.J., Axe, J.D., et al: ‘Evidence for stripe correlations of spins and holes in copper oxide superconductors’, Nature, 1995, 375, pp. 561563.
    21. 21)
      • 35. Hameed, A.S.H., Karthikeyan, C., Sasikumar, S., et al: ‘Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method’, J. Mater. Chem. B, 2013, 1, pp. 59505962.
    22. 22)
      • 27. Thovhogi, N., Diallo, A., Gurib-Fakim, A., et al: ‘Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties’, J. Alloys Compd, 2015, 647, pp. 392396.
    23. 23)
      • 8. Salavati-Niasari, M., Davar, F.: ‘Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor’, Mater. Lett., 2009, 63, pp. 441443.
    24. 24)
      • 33. Briante, R., Patumi, M., Terenziani, S., et al: ‘Olea europaea L. leaf extract and derivatives: antioxidant properties’, J. Agric. Food Chem., 2002, 50, pp. 49344940.
    25. 25)
      • 26. Brenes, M., Rejano, L., Garcia, P., et al: ‘Biochemical changes in phenolic compounds during Spanish-style green olive processing’, J. Agric. Food Chem., 1995, 43, pp. 27022706.
    26. 26)
      • 34. Benavente-Garcıa, O., Castillo, J., Lorente, J., et al: ‘Antioxidant activity of phenolics extracted from Olea europaea L. leaves’, Food Chem., 2000, 68, pp. 457462.
    27. 27)
      • 14. Aslani, A., Oroojpour, V.: ‘CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route’, Physica B Condens. Matter, 2011, 406, pp. 144149.
    28. 28)
      • 13. Punnoose, A., Magnone, H., Seehra, M.S., et al: ‘Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles’, Phys. Rev. B, 2001, 64, p. 174420.
    29. 29)
      • 39. Howlett, N.G., Avery, S.V.: ‘Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation’, Appl. Environ. Microbiol., 1997, 63, pp. 29712976.
    30. 30)
      • 17. Vaseem, M., Umar, A., Hahn, Y.B., et al: ‘Flower-shaped CuO nanostructures: structural, photocatalytic and XANES studies’, Catal. Commun., 2008, 10, pp. 1116.
    31. 31)
      • 12. Yang, J., Jiang, L.C., Zhang, W.D., et al: ‘A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays’, Talanta, 2010, 82, pp. 2533.
    32. 32)
      • 11. Cheng, Z., Xu, J., Zhong, H., et al: ‘Hydrogen peroxide-assisted hydrothermal synthesis of hierarchical CuO flower-like nanostructures’, Mater. Lett., 2011, 65, pp. 20472050.
    33. 33)
      • 36. Azam, A., Ahmed, A.S., Oves, M., et al: ‘Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains’, Int. J. Nanomedicine, 2012, 7, pp. 35273535.
    34. 34)
      • 15. Vila, M., Diaz-Guerra, C., Piqueras, J.: ‘Optical and magnetic properties of CuO nanowires grown by thermal oxidation’, J. Phys. D Appl. Phys., 2010, 43, p. 135403.
    35. 35)
      • 1. Erdoğan, İ.Y., Güllü, Ö.: ‘Optical and structural properties of CuO nanofilm: its diode application’, J. Alloys Compd, 2010, 492, pp. 378383.
    36. 36)
      • 2. Mukherjee, N., Show, B., Maji, S.K., et al: ‘CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity’, Mater. Lett., 2011, 65, pp. 32483250.
    37. 37)
      • 38. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., et al: ‘Strain specificity in antimicrobial activity of silver and copper nanoparticles’, Acta biomater., 2008, 4, pp. 707716.
    38. 38)
      • 41. Wei, Y., Chen, S., Kowalczyk, B., et al: ‘Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties’, J. Phys. Chem. C, 2010, 114, pp. 1561215616.
    39. 39)
      • 37. Kim, J.S., Kuk, E., Yu, K.N., et al: ‘Antimicrobial effects of silver nanoparticles’, Nanomedicine: Nanotechnol. Biol. Med., 2007, 3, pp. 95101.
    40. 40)
      • 25. Omar, S.H.: ‘Oleuropein in olive and its pharmacological effects’, Sci. Pharm., 2010, 78, pp. 133154.
    41. 41)
      • 6. Hu, Y., Huang, X., Wang, K., et al: ‘Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes’, J. Solid State Chem., 2010, 183, pp. 662667.
    42. 42)
      • 7. Hsieh, C.T., Chen, J.M., Lin, H.H., et al: ‘Field emission from various CuO nanostructures’, Appl. Phys. Lett., 2003, 83, pp. 33833385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0125
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0125
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address