Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential

Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.


    1. 1)
      • 1. Erdoğan, İ.Y., Güllü, Ö.: ‘Optical and structural properties of CuO nanofilm: its diode application’, J. Alloys Compd, 2010, 492, pp. 378383.
    2. 2)
      • 2. Mukherjee, N., Show, B., Maji, S.K., et al: ‘CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity’, Mater. Lett., 2011, 65, pp. 32483250.
    3. 3)
      • 3. Wijesundera, R.P.: ‘Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications’, Semicond. Sci. Technol., 2010, 25, p. 045015.
    4. 4)
      • 4. Yang, C., Su, X., Xiao, F., et al: ‘Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method’, Sens. Actuators B Chem., 2011, 158, pp. 299303.
    5. 5)
      • 5. MacDonald, A.H.: ‘Superconductivity: copper oxides get charged up’, Nature, 2001, 414, pp. 409410.
    6. 6)
      • 6. Hu, Y., Huang, X., Wang, K., et al: ‘Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes’, J. Solid State Chem., 2010, 183, pp. 662667.
    7. 7)
      • 7. Hsieh, C.T., Chen, J.M., Lin, H.H., et al: ‘Field emission from various CuO nanostructures’, Appl. Phys. Lett., 2003, 83, pp. 33833385.
    8. 8)
      • 8. Salavati-Niasari, M., Davar, F.: ‘Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor’, Mater. Lett., 2009, 63, pp. 441443.
    9. 9)
      • 9. Li, J., Wang, S.Q., Mayer, J.W., et al: ‘Oxygen-diffusion-induced phase boundary migration in copper oxide thin films’, Phys. Rev. B, 1989, 39, p. 12367.
    10. 10)
      • 10. Grzesik, Z., Migdalska, M.: ‘On the mechanism of Cu2O oxidation at high temperatures’, Defect Diffus. Forum, 2009, 289, pp. 429436.
    11. 11)
      • 11. Cheng, Z., Xu, J., Zhong, H., et al: ‘Hydrogen peroxide-assisted hydrothermal synthesis of hierarchical CuO flower-like nanostructures’, Mater. Lett., 2011, 65, pp. 20472050.
    12. 12)
      • 12. Yang, J., Jiang, L.C., Zhang, W.D., et al: ‘A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays’, Talanta, 2010, 82, pp. 2533.
    13. 13)
      • 13. Punnoose, A., Magnone, H., Seehra, M.S., et al: ‘Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles’, Phys. Rev. B, 2001, 64, p. 174420.
    14. 14)
      • 14. Aslani, A., Oroojpour, V.: ‘CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route’, Physica B Condens. Matter, 2011, 406, pp. 144149.
    15. 15)
      • 15. Vila, M., Diaz-Guerra, C., Piqueras, J.: ‘Optical and magnetic properties of CuO nanowires grown by thermal oxidation’, J. Phys. D Appl. Phys., 2010, 43, p. 135403.
    16. 16)
      • 16. Ranjbar-Karimi, R., Bazmandegan-Shamili, A., Aslani, A., et al: ‘Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles’, Phys. B Condens. Matter, 2010, 405, pp. 30963100.
    17. 17)
      • 17. Vaseem, M., Umar, A., Hahn, Y.B., et al: ‘Flower-shaped CuO nanostructures: structural, photocatalytic and XANES studies’, Catal. Commun., 2008, 10, pp. 1116.
    18. 18)
      • 18. Li, Y., Yang, X.Y., Rooke, J., et al: ‘Ultralong Cu (OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance’, J. Colloid and Interface Sci., 2010, 348, pp. 303312.
    19. 19)
      • 19. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    20. 20)
      • 20. Jan, T., Iqbal, J., Ismail, M., et al: ‘Synthesis, physical properties and antibacterial activity of metal oxides nanostructures’, Mater. Sci. Semicond. Process., 2014, 21, pp. 154160.
    21. 21)
      • 21. Monteiro, D.R., Gorup, L.F., Takamiya, A.S., et al: ‘The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver’, Int. J. Antimicrob. Agents, 2009, 34, pp. 103110.
    22. 22)
      • 22. Tranquada, J.M., Sternlieb, B.J., Axe, J.D., et al: ‘Evidence for stripe correlations of spins and holes in copper oxide superconductors’, Nature, 1995, 375, pp. 561563.
    23. 23)
      • 23. Soni, M.G., Burdock, G.A., Christian, M.S., et al: ‘Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods’, Food Chem. Toxicol., 2006, 44, pp. 903915.
    24. 24)
      • 24. Japón-Luján, R., Luque-Rodríguez, J.M., De Castro, M.L.: ‘Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves’, J. Chromatogr. A, 2006, 1108, pp. 7682.
    25. 25)
      • 25. Omar, S.H.: ‘Oleuropein in olive and its pharmacological effects’, Sci. Pharm., 2010, 78, pp. 133154.
    26. 26)
      • 26. Brenes, M., Rejano, L., Garcia, P., et al: ‘Biochemical changes in phenolic compounds during Spanish-style green olive processing’, J. Agric. Food Chem., 1995, 43, pp. 27022706.
    27. 27)
      • 27. Thovhogi, N., Diallo, A., Gurib-Fakim, A., et al: ‘Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties’, J. Alloys Compd, 2015, 647, pp. 392396.
    28. 28)
      • 28. Maqbool, Q., Nazar, M., Naz, S., et al: ‘Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract’, Int. J. Nanomed., 2016, 11, pp. 50155025.
    29. 29)
      • 29. Akhavan, O., Ghaderi, E.: ‘Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts’, Surf. Coat. Technol., 2010, 205, pp. 219223.
    30. 30)
      • 30. Das, D., Nath, B.C., Phukon, P., et al: ‘Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles’, Colloids Surfaces B Biointerfaces, 2013, 101, pp. 430433.
    31. 31)
      • 31. Padil, V.V.T., Černík, M.: ‘Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application’, Int. J. Nanomed., 2013, 8, pp. 889898.
    32. 32)
      • 32. Atiok, E., Bayçin, D., Bayraktar, O., et al: ‘Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibrion’, Sep. Purif. Technol., 2008, 62, pp. 342348.
    33. 33)
      • 33. Briante, R., Patumi, M., Terenziani, S., et al: ‘Olea europaea L. leaf extract and derivatives: antioxidant properties’, J. Agric. Food Chem., 2002, 50, pp. 49344940.
    34. 34)
      • 34. Benavente-Garcıa, O., Castillo, J., Lorente, J., et al: ‘Antioxidant activity of phenolics extracted from Olea europaea L. leaves’, Food Chem., 2000, 68, pp. 457462.
    35. 35)
      • 35. Hameed, A.S.H., Karthikeyan, C., Sasikumar, S., et al: ‘Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method’, J. Mater. Chem. B, 2013, 1, pp. 59505962.
    36. 36)
      • 36. Azam, A., Ahmed, A.S., Oves, M., et al: ‘Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains’, Int. J. Nanomedicine, 2012, 7, pp. 35273535.
    37. 37)
      • 37. Kim, J.S., Kuk, E., Yu, K.N., et al: ‘Antimicrobial effects of silver nanoparticles’, Nanomedicine: Nanotechnol. Biol. Med., 2007, 3, pp. 95101.
    38. 38)
      • 38. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., et al: ‘Strain specificity in antimicrobial activity of silver and copper nanoparticles’, Acta biomater., 2008, 4, pp. 707716.
    39. 39)
      • 39. Howlett, N.G., Avery, S.V.: ‘Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation’, Appl. Environ. Microbiol., 1997, 63, pp. 29712976.
    40. 40)
      • 40. Lippert, H., Brinkmeyer, R., Mülhaupt, T., et al: ‘Antimicrobial activity in sub-Arctic marine invertebrates’, Polar Biol., 2003, 26, pp. 591600.
    41. 41)
      • 41. Wei, Y., Chen, S., Kowalczyk, B., et al: ‘Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties’, J. Phys. Chem. C, 2010, 114, pp. 1561215616.
    42. 42)
      • 42. Dhineshbabu, N.R., Rajendran, V.: ‘Antibacterial activity of hybrid chitosan–cupric oxide nanoparticles on cotton fabric’, IET Nanobiotechnol., 2016, 10, pp. 1319.

Related content

This is a required field
Please enter a valid email address