access icon free Biosynthesis and characterisation of nano-silica as potential system for carrying streptomycin at nano-scale drug delivery

A growing trend within nanomedicine has been the fabrication of self-delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco-friendly conditions. This study reports on green synthesis of silica nanoparticles (Si-NPs) using Azadirachta indica leaves extract as an effective chelating agent. X-ray diffraction analysis and Fourier transform-infra-red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si-NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si-NPs have great potential in nano-drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano-drug delivery.

Inspec keywords: nanoparticles; nanomedicine; nanofabrication; scanning electron microscopy; drug delivery systems; silicon compounds; Fourier transform infrared spectra; X-ray diffraction

Other keywords: nanomedicine; scanning electron microscopy; X-ray diffraction analysis; streptomycin; cetyltrimethyl ammonium bromide; nanosilica; Fourier transform-infrared spectroscopy; SiO2; nanoscale drug delivery; silica nanoparticles; Azadirachta indica leaves extract

Subjects: Other methods of nanofabrication; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Infrared and Raman spectra in inorganic crystals; Patient care and treatment; Nanotechnology applications in biomedicine

References

    1. 1)
      • 8. Di Pasqua, A.J., Wallner, S., Kerwood, D.J., et al: ‘Adsorption of the PtII anticancer drug carboplatin by mesoporous silica’, Chem. Biodivers., 2009, 6, (9), pp. 13431349.
    2. 2)
      • 9. Halamová, D., Zeleňák, V.: ‘NSAID naproxen in mesoporous matrix MCM-41: drug uptake and release properties’, J. Incl. Phenom. Macrocyclic Chem., 2012, 72, (1-2), pp. 1523.
    3. 3)
      • 15. Thovhogi, N., Diallo, A., Gurib-Fakim, A., et al: ‘Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties’, J. Alloys Compd. , 2015, 647, pp. 392396.
    4. 4)
      • 2. Peer, D., Karp, J.M., Hong, S., et al: ‘Nanocarriers as an emerging platform for cancer therapy’, Nat. Nanotechnol., 2007, 2, (12), pp. 751760.
    5. 5)
      • 10. Beck, J.S., Vartuli, J.C., Roth, W.J., et al: ‘A new family of mesoporous molecular sieves prepared with liquid crystal templates’, J. Am. Chem. Soc., 1992, 114, (27), pp. 1083410843.
    6. 6)
      • 17. Chitra, K., Annadurai, G.: ‘Fluorescent silica nanoparticles in the detection and control of the growth of pathogen’, J. Nanotechnol., 2013.
    7. 7)
      • 13. Park, Y.S., Hong, Y.N., Weyers, A., et al: ‘Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles’, IET Nanobiotechnol., 2011, 5, (3), pp. 6978.
    8. 8)
      • 11. Li, X., Xu, H., Chen, Z.S., et al: ‘Biosynthesis of nanoparticles by microorganisms and their applications’, J. Nanomater., 2011, p. 8.
    9. 9)
      • 14. Saxena, M., Saxena, J., Nema, R., et al: ‘Phytochemistry of medicinal plants’, J. Pharmacognosy Phytochemistry, 2013, 1, (6).
    10. 10)
      • 12. Nath, D., Banerjee, P.: ‘Green nanotechnology – a new hope for medical biology’, Environ. Toxicol. Pharmacol., 2013, 36, (3), pp. 9971014.
    11. 11)
      • 21. Suhre, K., Shin, S.Y., Petersen, A.K., et al: ‘Human metabolic individuality in biomedical and pharmaceutical research’, Nature, 2011, 477, (7362), pp. 5460.
    12. 12)
      • 3. Kim, B.Y., Rutka, J.T., Chan, W.C.: ‘Nanomedicine’, N. Engl. J. Med., 2010, 363, (25), pp. 24342443.
    13. 13)
      • 5. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., et al: ‘Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers’, Adv. Drug Deliv. Rev., 2008, 60, (11), pp. 12781288.
    14. 14)
      • 19. Thuc, C.N.H., Thuc, H.H.: ‘Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method’, Nanoscale Res. Lett., 2013, 8, (1), pp. 110.
    15. 15)
      • 6. Barbe, C., Bartlett, J., Kong, L., et al: ‘Silica particles: a novel drug-delivery system’, Adv. Mater., 2004, 16, (21), pp. 19591966.
    16. 16)
      • 18. Stanley, R., Nesaraj, A.S.: ‘Effect of surfactants on the wet chemical synthesis of silica nanoparticles’, Int. J. Appl. Sci. Eng., 2014, 12, (1), pp. 921.
    17. 17)
      • 7. Di Pasqua, A.J., Yuan, H., Chung, Y., et al: ‘Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer’, J. Nucl. Med., 2013, 54, (1), pp. 111116.
    18. 18)
      • 4. O'brien, M.E.R., Wigler, N., Inbar, M.C.B.C.S.G., et al: ‘Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer’, Ann. Oncol., 2004, 15, (3), pp. 440449.
    19. 19)
      • 20. Meanwell, R.J., Shama, G.: ‘Direct FTIR assay of streptomycin in agar’, Biotechnol. Lett., 2005, 27, (20), pp. 16291631.
    20. 20)
      • 16. Arumugam, A., Karthikeyan, C., Hameed, A.S.H., et al: ‘Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties’, Mater. Sci. Eng. C, 2015, 49, pp. 408415.
    21. 21)
      • 1. Jain, R.K., Stylianopoulos, T.: ‘Delivering nanomedicine to solid tumors’, Nat. Rev. Clin. Oncol., 2010, 7, (11), pp. 653664.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0106
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading