Synthesis and characterization of MWCNT/TiO2/Au nanocomposite for photocatalytic and antimicrobial activity.

Synthesis and characterization of MWCNT/TiO2/Au nanocomposite for photocatalytic and antimicrobial activity.

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel combination of titanium oxide (TiO2)/gold (Au)/multiwalled carbon nanotubes (MWCNTs) nanocomposite (NC) was synthesised by sol– gel method. MWCNT functionalisation by modified Hummers method. TiO2/Au nanoparticles (NPs) were synthesised by biological method using Terminalia chebula bark extract. MWCNT/TiO2/Au NC samples were characterised by X-ray diffraction, ultraviolet–visible–diffuse reflectance spectra, microRaman, scanning electron microscopy and high-resolution-transmission electron microscopy analyses. The photocatalytic performance of the obtained for NC toward the decomposition of congo-red and the antimicrobial activity for inhibition of Gram positive (Bacillus subtilis, Streptococcus pneumonia and Staphylococcus aureus), Gram negative (Shigella dysenderiae, Proteus vulgaris and Klebsiella pneumonia) and fungal strains have been evaluated and the results are compared with positive control ampicillin. The metal and metal–oxide NPs have a lower sorption capacity. The herbicidal bond to the tested CNTs by the combination of electron donor–acceptor interactions and hydrogen bonds. In particular, the dispersion of NC and control of sodium borohydride, it has more efficient effect on the photodegradation and antibacterial activity of positive control of ampicillin. The NC material has exhibited maximum photodegradation and antibacterial activity results of zone of inhibition when compared with control samples.

Inspec keywords: nanobiotechnology; photodissociation; titanium compounds; sorption; nanocomposites; catalysis; nanoparticles; multi-wall carbon nanotubes; Raman spectra; microorganisms; scanning electron microscopy; hydrogen bonds; X-ray diffraction; visible spectra; gold; reflectivity; transmission electron microscopy; dyes; sol-gel processing; antibacterial activity; ultraviolet spectra; nanofabrication

Other keywords: photocatalytic activity; titanium oxide-gold-multiwalled carbon nanotubes nanocomposite; Staphylococcus aureus; Streptococcus pneumonia; Gram positive bacteria; microRaman spectra; Gram negative bacteria; Shigella dysenderiae; sol-gel method; C-TiO2-Au; high-resolution-transmission electron microscopy; antimicrobial activity; biological method; MWCNT functionalisation; electron donor-acceptor interactions; sodium borohydride; congo-red decomposition; metal-oxide nanoparticles; fungal strains; scanning electron microscopy; photodegradation; Terminalia chebula bark extract; nanoparticles; modified Hummers method; X-ray diffraction; sorption capacity; herbicidal bond; Bacillus subtilis; Proteus vulgaris; hydrogen bonds; ultraviolet-visible-diffuse reflectance spectra; Klebsiella pneumonia

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Photolysis and photodissociation by IR, UV and visible radiation; Biomedical materials; Heterogeneous catalysis at surfaces and other surface reactions; Preparation of fullerenes and fullerene-related materials, intercalation compounds, and diamond; Deposition from liquid phases (melts and solutions); Visible and ultraviolet spectra (condensed matter); Structure of fullerenes and fullerene-related materials; Sorption and accommodation coefficients (surface chemistry); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Optical properties of thin films and low-dimensional structures; Infrared and Raman spectra and scattering (condensed matter)


    1. 1)
      • 1. Klabunde, K.J.: ‘Nanoscale materials in chemistry’ (Wiley-Interscience, NJ, 2001).
    2. 2)
      • 2. Hoffmann, M.R., Martin, S.T., Choi, W.Y., et al: ‘Environmental applications of semiconductor photocatalysis’, Chem. Rev., 1995, 95, pp. 6996.
    3. 3)
      • 3. Cozzoli, P.D., Curri, M.L., Agostiano, A.: ‘Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems’, Chem. Commun., 2005, pp. 31863188, DOI: 10.1039/b503774c.
    4. 4)
      • 4. Mrowetz, M., Villa, A., Prati, L., et al: ‘Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye’, Gold Bull., 2007, 40, pp. 154160.
    5. 5)
      • 5. Bannat, I., Wessels, K., Oekermann, T., et al: ‘Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures’, Chem. Mater., 2009, 21, pp. 16451653.
    6. 6)
      • 6. Bahnemann, W., Muneer, M., Haque, M.M.: ‘Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions’, Catal. Today, 2007, 124, pp. 133148.
    7. 7)
      • 7. Bamwenda, G.R., Tsubota, S., Nakamura, T., et al: ‘Photoassisted hydrogen-production from a water ethanol solution; a comparison of activities of Au–TiO2 and Pt–TiO2’, J. Photochem. Photobiol., 1995, 89, pp. 177189.
    8. 8)
      • 8. Han, Z., Xufan, L., Tongxiang, F., et al: ‘Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis’, Adv. Mater., 2009, 22, pp. 951956.
    9. 9)
      • 9. Silva, C.G., Juarez, R., Marino, T., et al: ‘Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water’, J. Am. Chem. Soc., 2011, 133, pp. 595602.
    10. 10)
      • 10. Ao, C.H., Lee, S.C.: ‘Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner’, Chem. Eng. Sci., 2005, 60, pp. 103109.
    11. 11)
      • 11. Cao, Y.Q., He, T., Chen, Y.M., et al: ‘Fabrication of rutile TiO2–Sn anatase TiO2–N heterostructure and its application in visible-light photocatalysis’, J. Phys. Chem. C, 2005, 114, pp. 36273633.
    12. 12)
      • 12. Hernandez-Alonso, M.D., Fresno, F., Suarez, S., et al: ‘Development of alternative photocatalysts to TiO2: challenges and opportunities’, Energy Environ. Sci., 2009, 2, pp. 12311257.
    13. 13)
      • 13. Sun, Q.O., Xu, Y.M.: ‘Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water’, J. Phys. Chem. C, 2010, 114, pp. 1891118918.
    14. 14)
      • 14. Andersson, M., Osterlund, L., Ljungstrom, S., et al: ‘Preparation of nano size anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol’, J. Phys. Chem. B, 2002, 106, pp. 1067410679.
    15. 15)
      • 15. Pan, J., Liu, G., Lu, G.M., et al: ‘On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals’, Angew. Chem., Int. Ed., 2011, 50, pp. 21332137.
    16. 16)
      • 16. Subramanian, V., Wolf, E.E., Kamat, P.V.: ‘Influence of metal/ metal ion concentration on the photocatalytic activity of TiO2Au composite nanoparticles’, Langmuir, 2003, 19, pp. 469474.
    17. 17)
      • 17. Orlov, A., Chan, M.S., Jefferson, D.A., et al: ‘Photocatalytic degradation of water-soluble organic pollutants on TiO2 modified with gold nanoparticles’, Environ. Technol., 2006, 27, pp. 747752.
    18. 18)
      • 18. Pradhan, S., Ghosh, D., Chen, S.: ‘Janus nanostructures based on Au–TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol’, ACS Appl. Mater. Interfaces, 2009, 1, pp. 20602065.
    19. 19)
      • 19. Gopinath, K., Kumaraguru, S., Bhakyarj, K., et al: ‘Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity’, Superlattices Microstruct., 2016, 92, pp. 100110.
    20. 20)
      • 20. Subramanian, V., Wolf, E.E., Kamat, P.V.: ‘Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration’, J. Am. Chem. Soc., 2004, 126, pp. 49434950.
    21. 21)
      • 21. Cheng, J., Zhao, J., Tu, Y., et al: ‘Sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by multi-walled carbon nanotubes in polypyrrole’, Anal. Chim. Acta, 2005, 533, pp. 1116.
    22. 22)
      • 22. Wang, J.: ‘Nanomaterial-based electrochemical biosensors’, Analyst, 2005, 26, pp. 421426.
    23. 23)
      • 23. Zhou, Q., Ding, Y., Xiao, J.: ‘Simultaneous determination of cyanazine, chlorotoluron and chlorbenzuron in environmental water samples with SPE multiwalled carbon nanotubes and LC’, Chromatographia, 2007, 65, pp. 2530.
    24. 24)
      • 24. Feng, W., Feng, Y., Wu, Z., et al: ‘Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes’, J. Phys. Condens. Matter, 2005, 17, pp. 4361.
    25. 25)
      • 25. Bouazza, N., Ouzzine, M., Lillo-Ródenas, M.A., et al: ‘TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration’, Appl. Catal. B, 2009, 92, pp. 377383.
    26. 26)
      • 26. Yu, J., Ma, T., Liu, S.: ‘Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel’, Phys. Chem. Chem. Phys., 2011, 11, pp. 34913501.
    27. 27)
      • 27. Gui, M.M., Chai, S.P., Xu, B.Q., et al: ‘Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane’, Sol. Energy Mater. Sol. Cells, 2014, 122, pp. 183189.
    28. 28)
      • 28. Ashkarran, A.A., Fakhari, M., Mahmoudi, M.: ‘Synthesis of solar photo and bioactive CNT–TiO2 nanocatalyst’, RSC Adv., 2013, 3, pp. 1852918536.
    29. 29)
      • 29. Li, J., Zeng, H.C.: ‘Nanoreactors; size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors’, Angew. Chem., Int. Ed., 2005, 44, pp. 43424345.
    30. 30)
      • 30. Kumar, K.M., Sinhaa, M., Mandal, B.M., et al: ‘Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies’, Spectrochim. Acta A, 2012, 91, pp. 228233.
    31. 31)
      • 31. Hamid, S.B.A., Tan, T.L., Lai, C.W., et al: ‘Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of reactive black 5 dye’, Chin. J. Catal., 2014, 35, pp. 20142019.
    32. 32)
      • 32. Zhao, D., Yang, X., Chen, C., et al: ‘Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2’, J. Colloid Interface Sci., 2013, 398, pp. 234239.
    33. 33)
      • 33. Zeng, Q., Li, H., Duan, H., et al: ‘A green method to prepare TiO2/MWCNT nanocomposites with high photocatalytic activity and insights into effect of heat treatment on photocatalytic activity’, RSC Adv., 2015, 5, pp. 1343013436.
    34. 34)
      • 34. Arumugam, A., Karthikayan, C., Haja Hameed, A.S., et al: ‘Synthesis of cerium oxide nanoparticles using Gloriosa superb L. leaf extract and their structural, optical and antibacterial properties’, Mater. Sci. Eng. C, 2015, 49, pp. 408415.

Related content

This is a required field
Please enter a valid email address