Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synthesis and characterization of MWCNT/TiO2/Au nanocomposite for photocatalytic and antimicrobial activity.

A novel combination of titanium oxide (TiO2)/gold (Au)/multiwalled carbon nanotubes (MWCNTs) nanocomposite (NC) was synthesised by sol– gel method. MWCNT functionalisation by modified Hummers method. TiO2/Au nanoparticles (NPs) were synthesised by biological method using Terminalia chebula bark extract. MWCNT/TiO2/Au NC samples were characterised by X-ray diffraction, ultraviolet–visible–diffuse reflectance spectra, microRaman, scanning electron microscopy and high-resolution-transmission electron microscopy analyses. The photocatalytic performance of the obtained for NC toward the decomposition of congo-red and the antimicrobial activity for inhibition of Gram positive (Bacillus subtilis, Streptococcus pneumonia and Staphylococcus aureus), Gram negative (Shigella dysenderiae, Proteus vulgaris and Klebsiella pneumonia) and fungal strains have been evaluated and the results are compared with positive control ampicillin. The metal and metal–oxide NPs have a lower sorption capacity. The herbicidal bond to the tested CNTs by the combination of electron donor–acceptor interactions and hydrogen bonds. In particular, the dispersion of NC and control of sodium borohydride, it has more efficient effect on the photodegradation and antibacterial activity of positive control of ampicillin. The NC material has exhibited maximum photodegradation and antibacterial activity results of zone of inhibition when compared with control samples.

Inspec keywords: nanobiotechnology; photodissociation; titanium compounds; sorption; nanocomposites; catalysis; nanoparticles; multi-wall carbon nanotubes; Raman spectra; microorganisms; scanning electron microscopy; hydrogen bonds; X-ray diffraction; visible spectra; gold; reflectivity; transmission electron microscopy; dyes; sol-gel processing; antibacterial activity; ultraviolet spectra; nanofabrication

Other keywords: photocatalytic activity; titanium oxide-gold-multiwalled carbon nanotubes nanocomposite; Staphylococcus aureus; Streptococcus pneumonia; Gram positive bacteria; microRaman spectra; Gram negative bacteria; Shigella dysenderiae; sol-gel method; C-TiO2-Au; high-resolution-transmission electron microscopy; antimicrobial activity; biological method; MWCNT functionalisation; electron donor-acceptor interactions; sodium borohydride; congo-red decomposition; metal-oxide nanoparticles; fungal strains; scanning electron microscopy; photodegradation; Terminalia chebula bark extract; nanoparticles; modified Hummers method; X-ray diffraction; sorption capacity; herbicidal bond; Bacillus subtilis; Proteus vulgaris; hydrogen bonds; ultraviolet-visible-diffuse reflectance spectra; Klebsiella pneumonia

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Photolysis and photodissociation by IR, UV and visible radiation; Biomedical materials; Heterogeneous catalysis at surfaces and other surface reactions; Preparation of fullerenes and fullerene-related materials, intercalation compounds, and diamond; Deposition from liquid phases (melts and solutions); Visible and ultraviolet spectra (condensed matter); Structure of fullerenes and fullerene-related materials; Sorption and accommodation coefficients (surface chemistry); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Optical properties of thin films and low-dimensional structures; Infrared and Raman spectra and scattering (condensed matter)

References

    1. 1)
      • 15. Pan, J., Liu, G., Lu, G.M., et al: ‘On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals’, Angew. Chem., Int. Ed., 2011, 50, pp. 21332137.
    2. 2)
      • 3. Cozzoli, P.D., Curri, M.L., Agostiano, A.: ‘Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems’, Chem. Commun., 2005, pp. 31863188, DOI: 10.1039/b503774c.
    3. 3)
      • 7. Bamwenda, G.R., Tsubota, S., Nakamura, T., et al: ‘Photoassisted hydrogen-production from a water ethanol solution; a comparison of activities of Au–TiO2 and Pt–TiO2’, J. Photochem. Photobiol., 1995, 89, pp. 177189.
    4. 4)
      • 33. Zeng, Q., Li, H., Duan, H., et al: ‘A green method to prepare TiO2/MWCNT nanocomposites with high photocatalytic activity and insights into effect of heat treatment on photocatalytic activity’, RSC Adv., 2015, 5, pp. 1343013436.
    5. 5)
      • 16. Subramanian, V., Wolf, E.E., Kamat, P.V.: ‘Influence of metal/ metal ion concentration on the photocatalytic activity of TiO2Au composite nanoparticles’, Langmuir, 2003, 19, pp. 469474.
    6. 6)
      • 4. Mrowetz, M., Villa, A., Prati, L., et al: ‘Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye’, Gold Bull., 2007, 40, pp. 154160.
    7. 7)
      • 26. Yu, J., Ma, T., Liu, S.: ‘Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel’, Phys. Chem. Chem. Phys., 2011, 11, pp. 34913501.
    8. 8)
      • 23. Zhou, Q., Ding, Y., Xiao, J.: ‘Simultaneous determination of cyanazine, chlorotoluron and chlorbenzuron in environmental water samples with SPE multiwalled carbon nanotubes and LC’, Chromatographia, 2007, 65, pp. 2530.
    9. 9)
      • 11. Cao, Y.Q., He, T., Chen, Y.M., et al: ‘Fabrication of rutile TiO2–Sn anatase TiO2–N heterostructure and its application in visible-light photocatalysis’, J. Phys. Chem. C, 2005, 114, pp. 36273633.
    10. 10)
      • 18. Pradhan, S., Ghosh, D., Chen, S.: ‘Janus nanostructures based on Au–TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol’, ACS Appl. Mater. Interfaces, 2009, 1, pp. 20602065.
    11. 11)
      • 31. Hamid, S.B.A., Tan, T.L., Lai, C.W., et al: ‘Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of reactive black 5 dye’, Chin. J. Catal., 2014, 35, pp. 20142019.
    12. 12)
      • 25. Bouazza, N., Ouzzine, M., Lillo-Ródenas, M.A., et al: ‘TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration’, Appl. Catal. B, 2009, 92, pp. 377383.
    13. 13)
      • 6. Bahnemann, W., Muneer, M., Haque, M.M.: ‘Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions’, Catal. Today, 2007, 124, pp. 133148.
    14. 14)
      • 32. Zhao, D., Yang, X., Chen, C., et al: ‘Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2’, J. Colloid Interface Sci., 2013, 398, pp. 234239.
    15. 15)
      • 20. Subramanian, V., Wolf, E.E., Kamat, P.V.: ‘Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration’, J. Am. Chem. Soc., 2004, 126, pp. 49434950.
    16. 16)
      • 10. Ao, C.H., Lee, S.C.: ‘Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner’, Chem. Eng. Sci., 2005, 60, pp. 103109.
    17. 17)
      • 29. Li, J., Zeng, H.C.: ‘Nanoreactors; size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors’, Angew. Chem., Int. Ed., 2005, 44, pp. 43424345.
    18. 18)
      • 28. Ashkarran, A.A., Fakhari, M., Mahmoudi, M.: ‘Synthesis of solar photo and bioactive CNT–TiO2 nanocatalyst’, RSC Adv., 2013, 3, pp. 1852918536.
    19. 19)
      • 1. Klabunde, K.J.: ‘Nanoscale materials in chemistry’ (Wiley-Interscience, NJ, 2001).
    20. 20)
      • 24. Feng, W., Feng, Y., Wu, Z., et al: ‘Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes’, J. Phys. Condens. Matter, 2005, 17, pp. 4361.
    21. 21)
      • 5. Bannat, I., Wessels, K., Oekermann, T., et al: ‘Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures’, Chem. Mater., 2009, 21, pp. 16451653.
    22. 22)
      • 2. Hoffmann, M.R., Martin, S.T., Choi, W.Y., et al: ‘Environmental applications of semiconductor photocatalysis’, Chem. Rev., 1995, 95, pp. 6996.
    23. 23)
      • 22. Wang, J.: ‘Nanomaterial-based electrochemical biosensors’, Analyst, 2005, 26, pp. 421426.
    24. 24)
      • 17. Orlov, A., Chan, M.S., Jefferson, D.A., et al: ‘Photocatalytic degradation of water-soluble organic pollutants on TiO2 modified with gold nanoparticles’, Environ. Technol., 2006, 27, pp. 747752.
    25. 25)
      • 8. Han, Z., Xufan, L., Tongxiang, F., et al: ‘Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis’, Adv. Mater., 2009, 22, pp. 951956.
    26. 26)
      • 14. Andersson, M., Osterlund, L., Ljungstrom, S., et al: ‘Preparation of nano size anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol’, J. Phys. Chem. B, 2002, 106, pp. 1067410679.
    27. 27)
      • 12. Hernandez-Alonso, M.D., Fresno, F., Suarez, S., et al: ‘Development of alternative photocatalysts to TiO2: challenges and opportunities’, Energy Environ. Sci., 2009, 2, pp. 12311257.
    28. 28)
      • 34. Arumugam, A., Karthikayan, C., Haja Hameed, A.S., et al: ‘Synthesis of cerium oxide nanoparticles using Gloriosa superb L. leaf extract and their structural, optical and antibacterial properties’, Mater. Sci. Eng. C, 2015, 49, pp. 408415.
    29. 29)
      • 21. Cheng, J., Zhao, J., Tu, Y., et al: ‘Sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by multi-walled carbon nanotubes in polypyrrole’, Anal. Chim. Acta, 2005, 533, pp. 1116.
    30. 30)
      • 19. Gopinath, K., Kumaraguru, S., Bhakyarj, K., et al: ‘Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity’, Superlattices Microstruct., 2016, 92, pp. 100110.
    31. 31)
      • 27. Gui, M.M., Chai, S.P., Xu, B.Q., et al: ‘Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane’, Sol. Energy Mater. Sol. Cells, 2014, 122, pp. 183189.
    32. 32)
      • 9. Silva, C.G., Juarez, R., Marino, T., et al: ‘Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water’, J. Am. Chem. Soc., 2011, 133, pp. 595602.
    33. 33)
      • 13. Sun, Q.O., Xu, Y.M.: ‘Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water’, J. Phys. Chem. C, 2010, 114, pp. 1891118918.
    34. 34)
      • 30. Kumar, K.M., Sinhaa, M., Mandal, B.M., et al: ‘Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies’, Spectrochim. Acta A, 2012, 91, pp. 228233.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0072
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address