Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synthesis and characterisation of PEG modified chitosan nanocapsules loaded with thymoquinone

Thymoquinone (TQ), a major bioactive compound of Nigella sativa seeds has several therapeutic properties. The main drawback in bringing TQ to therapeutic application is that it has poor stability and bioavailability. Hence a suitable carrier is essential for TQ delivery. Recent studies indicate biodegradable polymers are potentially good carriers of bioactive compounds. In this study, polyethylene glycol (PEG) modified chitosan (Cs) nanocapsules were developed as a carrier for TQ. Aqueous soluble low molecular weight Cs and PEG was selected among different biodegradable polymers based on their biocompatibility and efficacy as a carrier. Optimisation of synthesis of nanocapsules was done based on particle size, PDI, encapsulation efficiency and process yield. A positive zeta potential value of +48 mV, indicating good stability was observed. Scanning electron microscope and atomic-force microscopy analysis revealed spherical shaped and smooth surfaced nanocapsules with size between 100 to 300 nm. The molecular dispersion of the TQ in Cs PEG nanocapsules was studied using X-ray powder diffraction. The Fourier transform infrared spectrum of optimised nanocapsule exhibited functional groups of both polymer and drug, confirming the presence of Cs, PEG and TQ. In vitro drug release studies showed that PEG modified Cs nanocapsules loaded with TQ had a slow and sustained release.

References

    1. 1)
      • 28. Andrade, F., Goycoolea, F., Chiappetta, D.A., et al: ‘Chitosan-Grafted copolymers and chitosan- ligand conjugates as matrices for pulmonary drug delivery’, Int. J. Carbohydr. Chem., 2011, 2011, pp. 114.
    2. 2)
      • 20. Mahapatro, A., Singh, D.K.: ‘Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines’, J. Nanobiotechnol., 2011, 9, pp. 111.
    3. 3)
      • 2. Paarakh, P.M.: ‘Nigella sativa Linn. – A comprehensive review’, Indian J. Nat. Prod. Res., 2010, 1, (4), pp. 409429.
    4. 4)
      • 18. Sheng, Y., Liu, C., Yuan, Y., et al: ‘Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan’, Biomaterials, 2009, 30, (12), pp. 23402348.
    5. 5)
      • 10. Agrawal, S., Ahmad, H., Dwivedi, M., et al: ‘PEGylated chitosan nanoparticles potentiate repurposing of ormeloxifene in breast cancer therapy’, Nanomedicine, 2016, 11, (16), pp. 21472169.
    6. 6)
      • 31. Zhang, X., Zhang, H., Wu, Z., et al: ‘Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles’, Eur. J. Pharm. Biopharm., 2008, 68, (3), pp. 526534.
    7. 7)
      • 25. Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L., et al: ‘Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers’, J. Appl. Polym. Sci., 1997, 63, (1), pp. 125132.
    8. 8)
      • 5. Nallamuthu, I., Parthasarathi, A., Khanum, F.: ‘Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties’, Int. Current Pharm. J., 2013, 2, (12), pp. 202207.
    9. 9)
      • 4. Raschi, A.B., Romano, E., Benavente, A.M., et al: ‘Structural and vibrational analysis of thymoquinone’, Spectrochim. Acta, 2010, Part A 77, pp. 497505.
    10. 10)
      • 26. Zhang, H.L., Wu, S.H., Tao, Y., et al: ‘Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system’, J. Nanomaterials, 2010, 1, pp. 15.
    11. 11)
      • 36. Cardoso, T., Galhano, C.I.C., Ferreira Marques, M.F., et al: ‘Thymoquinone β-Cyclodextrin nanoparticles system: a preliminary study’, Spectrosc. Int. J., 2012, 27, (5–6), pp. 329336.
    12. 12)
      • 14. Tang, Z.-X., Qian, J.-Q., Shi, L.-E.: ‘Preparation of chitosan nanocapsules as carrier for immobilized enzyme’, Appl. Biochem. Biotechnol., 2007, 136, pp. 7796.
    13. 13)
      • 15. Bhattacharya, S., Ahir, M., Patra, P., et al: ‘PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a’, Biomaterials, 2015, 51, pp. 91107.
    14. 14)
      • 3. D'Antuono, F.L., Moretti, A., Lovato, A.F.S.: ‘Seed yield, yield components, oil content and essential oil content and composition of Nigella satiaiva L. and Nigella damascena L’, Ind. Crops Prod., 2002, 15, pp. 5969.
    15. 15)
      • 11. Unsoy, G., Yalcin, S., Khodadust, R., et al: ‘Synthesis optimization and characterization of chitosan-coated ironoxide nanoparticles produced for biomedical applications’, J. Nanoparticle Res., 2012, 14, (11), pp. 113.
    16. 16)
      • 33. Abu-Dahab, R., Odeh, F., Ismail, S.I., et al: ‘Preparation, characterization and antiproliferative activity of thymoquinone-β-cyclodextrin self assembling nanoparticles’, Die Pharmazie-An Int. J. Pharm. Sci., 2013, 68, (12), pp. 939944.
    17. 17)
      • 6. Schneider-Stock, R., Fakhoury, I.H., Zaki, A.M., et al: ‘Thymoquinone: fifty years of success in the battle against cancer models’, Drug Discov. Today, 2014, 19, (1), pp. 1830.
    18. 18)
      • 21. Jia, M., Li, Y., Yang, X., et al: ‘Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug delivery and synergistic anticancer effect’, ACS Appl. Mater. Interfaces, 2014, 6, (14), pp. 1141311423.
    19. 19)
      • 23. Lin, J., Li, Y., Li, Y., et al: ‘Drug/dye-loaded, multifunctional PEG-chitosan-iron oxide nanocomposites for methotrexate synergistically self-targeted cancer therapy and dual model imaging’, ACS Appl. Mater. Interfaces, 2015, 7, (22), pp. 1190811920.
    20. 20)
      • 30. Fan, W., Yan, W., Xu, Z., et al: ‘Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique’, Colloids Surfaces B Biointerfaces, 2012, 90, pp. 2127.
    21. 21)
      • 12. Arunkumar, R., Prashanth, K.V.H., Baskaran, V.: ‘Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: characterization and bioavailability of lutein in vitro and in vivo’, Food Chem., 2013, 141, (1), pp. 327337.
    22. 22)
      • 13. Chun, W., Xiong, F., Sheng, L.: ‘Water soluble chitosan nanoparticles as a novel carrier system for protein delivery’, Chin. Sci. Bull., 2007, 52, (7), pp. 883889.
    23. 23)
      • 8. Tembhurne, S.V., Feroz, S., More, B.H., et al: ‘A review on therapeutic potential of Nigella sativa (kalonji) seeds’, J. Med. Plants Res., 2014, 8, (3), pp. 167177.
    24. 24)
      • 19. Guo, F., Fan, Z., Yang, J., et al: ‘A comparative evaluation of hydroxycamptothecin drug nanorods with and without methotrexate prodrug functionalization for drug delivery’, Nanoscale Res. Lett., 2016, 11, p. 384.
    25. 25)
      • 17. Lollo, G., Hervella, P., Calvo, P., et al: ‘Enhanced in vivo therapeutic efficacy of plitidepsin-loaded nanocapsules decorated with a new poly-aminoacid-PEG derivative’, Int. J. Pharm., 2015, 483, (1), pp. 212219.
    26. 26)
      • 9. Riva, R., Ragelle, H., des Rieux, A., et al: ‘Chitosan and chitosan derivatives in drug delivery and tissue engineering’, in Jayakumar, R., Prabaharan, M., Muzarelli, M.A.A. (Eds): ‘Adv Polym Sci’ (Springer Berlin Heidelberg, 2011), pp. 1944.
    27. 27)
      • 34. Larsson, M., Borde, A., Mattisson, E., et al: ‘Evaluation of carboxymethyl-hexanoyl chitosan as a protein nanocarrier’, Nanomaterials Nanotechnol., 2013, 1, (3), pp. 37.
    28. 28)
      • 1. Naz, H.: ‘Nigella sativa: the miraculous herb’, Pak. J. Biochem. Mol. Biol, 2011, 44, (1), pp. 4448.
    29. 29)
      • 7. El-Khouly, D., El-Bakly, W.M., Awad, A.S., et al: ‘Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-inducedoxidative stress and activation of nuclear factor Kappa-B in rats’, Toxicology, 2012, 302, pp. 106113.
    30. 30)
      • 29. Salmani, J.M.M., Asghar, S., Lv, H., et al: ‘Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light’, Molecules, 2014, 19, (5), pp. 59255939.
    31. 31)
      • 32. Zhu, S., Qian, F., Zhang, Y., et al: ‘Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles’, Eur. Polym. J., 2007, 43, (6), pp. 22442253.
    32. 32)
      • 24. Hou, Z., Lin, J., Li, Y., et al: ‘Validation of a dual role of methotrexate based chitosan nanoparticles in vivo’, RSC Adv., 2015, 5, p.41393.
    33. 33)
      • 22. Luo, F., Li, Y., Jia, M., et al: ‘Validation of a Janus role of methotrexate – based PEGylated chitosan nanoparticles in vitro’, Nanoscale Res. Lett., 2014, 9, (1), pp. 113.
    34. 34)
      • 27. Alam, S., Khan, Z.I., Mustafa, G., et al: ‘Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study’, Int. J. Nanomedicine, 2012, 7, pp. 57055718.
    35. 35)
      • 35. Deygen, I.M., Kudryashova, E.V.: ‘Structure and stability of anionic liposomes complexes with PEG-chitosan branched copolymer’, Russ. J. Bioorg. Chem., 2014, 40, (5), pp. 547557.
    36. 36)
      • 16. Wu, Y., Yang, W., Wang, C., et al: ‘Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate’, Int. J. Pharm., 2005, 295, pp. 235245.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0055
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address