Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Characterisation of sol–gel method synthesised MgZnFe2O4 nanoparticles and its cytotoxic effects on breast cancer cell line, MDA MB-231 in vitro

Characterisation of sol–gel method synthesised MgZnFe2O4 nanoparticles and its cytotoxic effects on breast cancer cell line, MDA MB-231 in vitro

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB-231) and (MCF-7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB-231 and MCF-7 after being examined with MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB-231 cell line than in MCF-7. Therefore, further cytotoxicity tests were performed on MDA MB-231 cell line.

References

    1. 1)
      • 4. Bhattacharya, U., Darshane, V.S.: ‘Spin glass behaviour of the system CoFe2–x GaxO4’, J. Mater. Chem., 1993, 3, (3), p. 299.
    2. 2)
      • 8. Yu, S.-H., Yoshimura, M.: ‘Direct fabrication of ferrite MFe2O4 (M=Zn, Mg)/Fe composite thin films by soft solution processing’, Chem. Mater., 2000, 12, (12), pp. 38053810.
    3. 3)
      • 33. Villanueva, A., Cañete, M., Roca, A.G., et al: ‘The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells’, Nanotechnology, 2009, 20, (11), p. 115103.
    4. 4)
      • 2. Novelo, F., Valenzuela, R.: ‘On the reaction kinetics of nickel ferrite from iron and nickel oxides’, Mater. Res. Bull., 1995, 30, (3), pp. 335340.
    5. 5)
      • 6. ‘INIS Collection Search – Single Result. Available at https://www.inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=16003983.
    6. 6)
      • 10. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Characteristics and cytotoxicity of magnetic nanoparticles on breast cancer’, J. Opt. Biomed. Mater., 2014, 6, (2), pp. 4150.
    7. 7)
      • 22. Rahman, I.A., Padavettan, V.: ‘Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica–polymer nanocomposites – areview’, J. Nanomater., 2012, 2012 p. 15, Article ID 132424.
    8. 8)
      • 26. Sivakumar, P., Ramesh, R., Ramanand, A., et al: ‘Synthesis and study of magnetic properties of NiFe2O4 nanoparticles by PVA assisted auto-combustion method’, J. Mater. Sci. Mater. Electron., 2011, 23, (5), pp. 10111015.
    9. 9)
      • 24. Vijayakumar, P., Pandian, M.S., Mukhopadhyay, S., et al: ‘Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell’, J. Sol–Gel Sci. Technol., 2015, 75, (3), pp. 487494.
    10. 10)
      • 23. Rahman, I.A., Padavettan, V.: ‘Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica–polymer nanocomposites – a review’, J. Nanomater., 2012, 2012, pp. 115.
    11. 11)
      • 31. Campbell, M.J., Hamilton, B., Shoemaker, M., et al: ‘Antiproliferative activity of Chinese medicinal herbs on breast cancer cells in vitro’, Anticancer Res.., 2002, 22, (6C), pp. 38433852.
    12. 12)
      • 25. Chen, L., Shang, Y., Liu, H., et al: ‘Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion’, Mater. Des., 2010, 31, (4), pp. 16611665.
    13. 13)
      • 17. ‘Targeted Cancer Therapies Fact Sheet – National Cancer Institute. Available at http://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet.
    14. 14)
      • 29. Raghuvanshi, S., Satalkar, M., Tapkir, P., et al: ‘On the structural and magnetic study of Mg1−xZnxFe2O4’, J. Phys. Conf. Ser., 2014, 534, (4), p. 012031.
    15. 15)
      • 30. Xin, R., Ren, F., Leng, Y.: ‘Synthesis and characterization of nano-crystalline calcium phosphates with EDTA-assisted hydrothermal method’, Mater. Des., 2010, 31, (4), pp. 16911694.
    16. 16)
      • 27. Yahya, N., Aziz, A.A., Daud, H., et al: ‘Synthesis and characterization of magnesium zinc ferrites as EM source’. 2008.
    17. 17)
      • 36. Abu, N., Akhtar, M.N., Yeap, S.K., et al: ‘Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro’, PLoS One, 2014, 9, (10), p. e105244.
    18. 18)
      • 1. De Jong, W.H., Borm, P.J.A.: ‘Drug delivery and nanoparticles: applications and hazards.’, Int. J. Nanomed., 2008, 3, (2), pp. 133149.
    19. 19)
      • 7. Deng, H., Chen, H., Li, H.: ‘Synthesis of crystal MFe2O4 (M=Mg, Cu, Ni) microspheres’, Mater. Chem. Phys., 2007, 101, (2–3), pp. 509513.
    20. 20)
      • 37. Wieder, T.: ‘Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor–ligand interaction and occurs downstream of caspase-3’, Blood, 2001, 97, (5), pp. 13781387.
    21. 21)
      • 3. Bercoff, P.G., Bertorello, H.R.: ‘Exchange constants and transfer integrals of spinel ferrites’, J. Magn. Magn. Mater., 1997, 169, (3), pp. 314322.
    22. 22)
      • 20. Perlstein, B., Ram, Z., Daniels, D., et al: ‘Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring’, Neuro-Oncol., 2008, 10, (2), pp. 153161.
    23. 23)
      • 21. Wu, Z., Li, S., Wan, J., et al: ‘Cr(VI) adsorption on an improved synthesised cross-linked chitosan resin’, J. Mol. Liq., 2012, 170, pp. 2529.
    24. 24)
      • 14. Verma, S., Chand, J., Batoo, K.M., et al: ‘Structural, magnetic and Mössbauer spectral studies of aluminum substituted Mg–Mn–Ni ferrites (Mg0.2Mn0.5Ni0.3AlyFe2−yO4)’, J. Alloys Compd., 2013, 551, pp. 715721.
    25. 25)
      • 28. Ahmed, A.I., Siddig, M.A., Mirghni, A.A., et al: ‘Structural and optical properties of Mg1-xZnxFe2O4 nano-ferrites synthesized using co-precipitation method’, Sci. Res. Publ., 2015, 4, pp. 4552, no. May.
    26. 26)
      • 15. Kahn, M.L., Zhang, Z.J.: ‘Synthesis and magnetic properties of CoFe[sub 2]O[sub 4] spinel ferrite nanoparticles doped with lanthanide ions’, Appl. Phys. Lett., 2001, 78, (23), p. 3651.
    27. 27)
      • 9. Balaji, N., Begum, K.M.M.S., Anantharaman, N., et al: ‘Absoprtion and desorption of L-phenylalanine on nano-sized magnetic nanoparticle’, J. Eng. Appl. Sci., 2008, 4, pp. 3644.
    28. 28)
      • 38. Al-Qubaisi, M.S., Rasedee, A., Flaifel, M.H., et al: ‘Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin’, Int. J. Nanomed., 2013, 8, pp. 24972508.
    29. 29)
      • 19. Sun, C., Lee, J., Zhang, M.: ‘Magnetic nanoparticles in MR imaging and drug delivery’, Adv. Drug Deliv. Rev., 2008, 60, (11), pp. 12521265.
    30. 30)
      • 13. Raghavender, A.T., Kulkarni, R.G., Jadhav, K.M.: ‘Magnetic properties of nanocrystalline Al doped nickel ferrite synthesized by the sol–gel method’, Chin. J. Phys., 2008, 46, (3), pp. 366375.
    31. 31)
      • 5. John Berchmans, L., Kalai Selvan, R., Selva Kumar, P., et al: ‘Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process’, J. Magn. Magn. Mater., 2004, 279, (1), pp. 103110.
    32. 32)
      • 11. Tseng, T.K., Lin, Y.S., Chen, Y.J., et al: ‘A review of photocatalysts prepared by sol–gel method for VOCs removal’, Int. J. Mol. Sci., 2010, 11, (6), pp. 23362361.
    33. 33)
      • 16. Wahajuddin, A.S.: ‘Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers’, Int. J. Nanomed., 2012, 7, pp. 34453471.
    34. 34)
      • 34. Wang, L., Zhang, H., Chen, B., et al: ‘Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells’, Int. J. Nanomed., 2012, 7, pp. 789798.
    35. 35)
      • 35. McIlwain, D.R., Berger, T., Mak, T.W.: ‘Caspase functions in cell death and disease’, Cold Spring Harb. Perspect. Biol., 2013, 5, (4), p. a008656.
    36. 36)
      • 32. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Sol–gel auto-combustion synthesis of cobalt ferrite and it's cytotoxicity properties’, Dig. J. Nanomater. Biostruct., 2013, 8, (4), pp. 16011610.
    37. 37)
      • 18. Goldberg, M.S., Hook, S.S., Wang, A.Z., et al: ‘Biotargeted nanomedicines for cancer: six tenets before you begin’, Nanomed. (Lond.), 2013, 8, (2), pp. 299308.
    38. 38)
      • 12. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure’, J. Nanomater., 2013, 2013Article ID 865024, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0007
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address