© The Institution of Engineering and Technology
The biosynthesis of silver nanoparticles (AgNPs) has been proved to be a cost effective and environmental friendly approach toward chemical and physical methods. In the present study, biosynthesis of AgNPs was carried out using aqueous extract of Zea mays (Zm) husk. The initial colour change from golden yellow to orange was observed between 410 and 450 nm which confirmed the synthesis of AgNPs. Also, dynamic light scattering-particle size analysis confirmed the average size to be 113 nm and zeta potential value of −28 kV. The morphology of synthesised ZmAgNPs displayed flower-shaped structure, X-ray diffraction pattern revealed the strongest peaks at 2θ = 38.6° and 64° which proved that the nanoparticle has the face centred crystalline structure. The Fourier transform infrared spectroscopy results showed strong absorption bands at 1394.53, 2980.02 and 2980.02 cm−1 due to the presence of alkynes, carboxylic acids, alcoholic and phenolic groups. The maximum zone of inhibition was observed against Salmonella typhi (22 mm) and Candida albicans (18 mm). The synthesised nanoparticles exhibited more free radical scavenging activity than the aqueous plant extract. This is the first report on the synthesis of AgNP from Zm husk, delivers the efficient and stable ZmAgNPs through simple feasible approach toward green biotechnology.
References
-
-
1)
-
1. Prakash, P., Gnanaprakasam, P., Emmanuel, R., et al: ‘Green synthesis of silver nanoparticles from leaf extract of Mimusops eleni, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates’, Colloids Surf. B, 2013, 108, pp. 255–259 (doi: 10.1016/j.colsurfb.2013.03.017).
-
2)
-
2. Thilagam, M., Tamilselvi, A., Chandrasekeran, B., et al: ‘Photosynthesis of silver nanoparticles using medicinal and dye yielding plant of Bixa Orellama L. leaf extract’, J. Pharm. Sci. Innov., 2013, 2, pp. 9–13 (doi: 10.7897/2277-4572.02441).
-
3)
-
3. Pantelis, K., Andreas, D., Vassilis, Z., et al: ‘Green synthesis of silver nanoparticles produced using Arbutus Unedo leaf extract’, Mater. Lett., 2010, 76, pp. 18–20.
-
4)
-
6. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, INT Nano Lett., 2012, 2, pp. 1–10 (doi: 10.1186/2228-5326-2-32).
-
5)
-
5. Joseph, O., Bamidele, V., Owoyele, M.N., et al: ‘Analgesic and anti-inflammatory effects of aqueous extract of Zea mays husk in male Wistar rats’, J. Med. Food, 2010, 13, pp. 343–347 (doi: 10.1089/jmf.2008.0311).
-
6)
-
6. Dipankar, C., Murugan, S.: ‘The green synthesis characterization and evaluation of the biological activities of silver nanoparticles using Irestene Herbstii aqueous leaf extracts’, Colloids surf. B, Biointerfaces, 2012, 98, pp. 112–119 (doi: 10.1016/j.colsurfb.2012.04.006).
-
7)
-
7. Perez, C., Paul, M., Bazerque, P.: ‘An antibiotic assay by the agar well diffusion method’, Acta Biol. Med. Exp., 1990, 15, pp. 113–115.
-
8)
-
8. Chang, C.W., Sei, K.C., Soon, H.S., et al: ‘Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison’, Plant Sci., 2002, 163, pp. 1161–1168 (doi: 10.1016/S0168-9452(02)00063-8).
-
9)
-
9. Mehrdad, F., Khalil, F.: ‘Biological and green synthesis of silver nanoparticles’, Turk. J. Eng. Environ. Sci., 2010, 34, pp. 281–287.
-
10)
-
10. Ya-yuan, M., Yan-kui, T., Sheng-ye, W., et al: ‘Green synthesis of silver nanoparticles using eucalyptus leaf extract’, Mater. Lett., 2015, 144, pp. 165–167 (doi: 10.1016/j.matlet.2015.01.004).
-
11)
-
11. Stefano, P., Veera, H., Polina, P.: ‘Biogenic synthesis of antimicrobial silver nanoparticles capped with l-cysteine’, Colloids Surf. A, Physicochem. Eng. Aspects, 2014, 460, pp. 219–224 (doi: 10.1016/j.colsurfa.2013.09.034).
-
12)
-
12. Kaszuba, M., McKnight, D., Connah, M.T., et al: ‘Measuring sub nanometre sizes using dynamic light scattering’, J. Nanoparticle Res., 2008, 10, pp. 823–829 (doi: 10.1007/s11051-007-9317-4).
-
13)
-
13. Umoren, S.A., Obot, I.B., Gasem, Z.M.: ‘Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature’, J. Mater. Environ. Sci., 2008, 5, pp. 907–914.
-
14)
-
14. Javad, B., Farideh, N., Tayebe, R., et al: ‘Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model’, Molecules, 2014, 19, pp. 4624–4634 (doi: 10.3390/molecules19044624).
-
15)
-
15. Ajithaa, B., Ashok, K.R.Y., Sreedhara, R.P.: ‘Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract’, Mater. Sci. Eng. C., 2015, 49, pp. 373–381 (doi: 10.1016/j.msec.2015.01.035).
-
16)
-
16. Parameshwaran, R., Kalaiselvam, S., Jayavel, R.: ‘Green synthesis of silver nanoparticles using Beta vulgaris: role of process conditions on size distribution and surface structure’, Mater. Chem. Phys., 2013, 140, pp. 135–147 (doi: 10.1016/j.matchemphys.2013.03.012).
-
17)
-
17. Roopan, S.M., Rohit, M.G., Rahuman, A.A., et al: ‘Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity’, Ind. Crops Prod., 2013, 43, pp. 631–635 (doi: 10.1016/j.indcrop.2012.08.013).
-
18)
-
41. Jha, A.K., Prasad, K.: ‘Green synthesis of silver nanoparticles using cycas leaf’, Int. J. Green Nanotechnol., Phys. Chem., 2010, 1, (2), pp. P110–P117 (doi: 10.1080/19430871003684572).
-
19)
-
19. Akilandeshwari, S., Sathiya, C.K.: ‘Fabrication and characterization of silver nanoparticles using Delonix leaf broth’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2013, 128, pp. 337–341.
-
20)
-
20. Rajkiran, R.B., Veera, B.N., Pratap, R.K.: ‘Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties’, Saudi J. Biol. Sci., 2015, 22, pp. 637–644 (doi: 10.1016/j.sjbs.2015.01.007).
-
21)
-
21. Magudapathy, P., Gangopadhyay, P., Panigrahi, B.K., et al: ‘Electrical transport studies of Ag nanoclusters embedded in glass matrix’, Physica B., 2001, 299, pp. 142–146 (doi: 10.1016/S0921-4526(00)00580-9).
-
22)
-
22. Subbaiya, R., Shiyamala, M., Revathi, K., et al: ‘Biological synthesis of silver nanoparticles from Nerium oleander and its antibacterial and antioxidant property’, Int. J. Current Microbiol. Appl. Sci., 2014, 3, pp. 83–87.
-
23)
-
23. Abraham, J., Logeswari, P., Silambarasan, S.: ‘Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties’, Sci. Iranica, 2012, 20, pp. 1049–1054.
-
24)
-
24. Bunghez, I.R., Barbinta, P.M.E., Badead, N., et al: ‘Antioxidant silver nanoparticles green synthesized using ornamental plants’, J. Optoelectron. Adv. Mater., 2012, 14, pp. 1016–1022.
-
25)
-
25. Nabavi, S.M., Ebrahimzadeh, M.A., Nabavi, S.F., et al: ‘In vitro antioxidant and free radical scavenging activity of Diospyros lotus and Pyrus boissieriana growing in Iran’, Pharmacognosy Mag., 2009, 4, pp. 122–126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0103
Related content
content/journals/10.1049/iet-nbt.2015.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6