© The Institution of Engineering and Technology
This study reports the unprecedented, novel and eco-friendly method for the synthesis of three-dimensional (3D) copper nanostructure having flower like morphology using leaf extract of Ficus benghalensis. The catalytic activity of copper nanoflowers (CuNFs) was investigated against methylene blue (MB) used as a modal dye pollutant. Scanning electron micrograph evidently designated 3D appearance of nanoflowers within a size range from 250 nm to 2.5 μm. Energy-dispersive X-ray spectra showed the presence of copper elements in the nanoflowers. Fourier-transform infrared spectra clearly demonstrated the presence of biomolecules which is responsible for the synthesis of CuNFs. The catalytic activity of the synthesised CuNFs was monitored by ultraviolet–visible spectroscopy. The MB was degraded by 72% in 85 min on addition of CuNFs and the rate constant (k) was found to be 0.77 × 10−3 s−1. This method adapted for synthesis of CuNFs offers a valuable contribution in the area of nanomaterial synthesis and in water research by suggesting a sustainable and an alternative route for removal of toxic solvents and waste materials.
References
-
-
1)
-
1. Saxena, A., Tripathi, R.M., Zafar, F., et al: ‘Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity’, Mater. Lett., 2012, 67, pp. 91–94 (doi: 10.1016/j.matlet.2011.09.038).
-
2)
-
2. Song, J.Y., Kiml, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess. Biosyst. Eng., 2009, 32, pp. 79–84 (doi: 10.1007/s00449-008-0224-6).
-
3)
-
3. Nalwa, H.S.: ‘Handbook of nanostructured materials and nanotechnology’ (Synthesis and Processing, Academic Press, New York, 2000), vol. l.
-
4)
-
20. Zhao, G., Stevens, S.: ‘Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion’, Biometals, 2012, 11, (1), pp. 27–32 (doi: 10.1023/A:1009253223055).
-
5)
-
5. Tripathi, R.M., Gupta, R.K., Singh, P., et al: ‘Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach’, Sens. Actuators B, Chem., 2014, 204, pp. 637–646 (doi: 10.1016/j.snb.2014.08.015).
-
6)
-
6. Tripathi, R.M., Gupta, R.K., Shrivastav, A., et al: ‘Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity’, Adv. Nat. Sci., Nanosci. Nanotechnol., 2013, 4, (3), pp. 035005–035010 (doi: 10.1088/2043-6262/4/3/035005).
-
7)
-
7. Saxena, A., Tripathi, R.M., Singh, R.P.: ‘Biological synthesis of silver nano particles by using onion (Allium cepa) extract and their antibacterial activities’, Dig. J. Nanomater. Bios., 2010, 5, pp. 427–432.
-
8)
-
8. Prathna, T.C., Chandrasekaran, N., Raichur, A.M., et al: ‘Biomimetic synthesis of silver nanoparticles by citrus limon (lemon) aqueous extract and theoretical prediction of particle size’, Colloids Surf. B, Biointerfaces, 2011, 82, pp. 152–159 (doi: 10.1016/j.colsurfb.2010.08.036).
-
9)
-
9. Schaper, A.K., Hou, H., Greiner, A., et al: ‘Copper nanoparticles encapsulated in multi-shell carbon cages’, Appl. Phys. A, Mater. Sci. Process., 2004, 78, pp. 73–77 (doi: 10.1007/s00339-003-2199-0).
-
10)
-
10. Dhas, N.A., Raj, C.P., Gedanken, A.: ‘Synthesis, characterization and properties of metallic copper nanoparticles’, Chem. Mater., 1998, 10, pp. 1446–1452 (doi: 10.1021/cm9708269).
-
11)
-
11. Huang, H.H., Yan, F.Q., Kek, Y.M., et al: ‘Synthesis, characterization and nonlinear optical properties of copper nanoparticles’, Langmuir, 1997, 13, pp. 172–175 (doi: 10.1021/la9605495).
-
12)
-
12. Pergolese, B., Muniz, M.M., Bigotto, A.: ‘Surface enhanced raman scattering investigation of the adsorption of 2-mercaptobenzoxazole on smooth copper surfaces doped with silver colloidal nanoparticles’, J. Phys. Chem., 2006, 110, pp. 9241–9245 (doi: 10.1021/jp0605698).
-
13)
-
13. Flytzanis, C.: ‘Nonlinear optics in mesoscopic composite materials’, J. Phys. B, At. Mol. Opt. Phys., 2005, 38, pp. S661–S679 (doi: 10.1088/0953-4075/38/9/015).
-
14)
-
14. Decan, M.R., Impellizzeri, S., Marin, M.L., et al: ‘Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy’, Nat. Commun., 2014, 5, p. 4612 (doi: 10.1038/ncomms5612).
-
15)
-
15. Sau, T.K., Pal, A., Pal, T.: ‘Size regime dependent catalysis by gold nanoparticles for the reduction of eosin’, J. Phys. Chem. B, 2001, 105, pp. 9266–9272 (doi: 10.1021/jp011420t).
-
16)
-
16. Huanga, J.H., Zhou, C.F., Zenga, G.M., et al: ‘Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow membrane’, J. Membr. Sci., 2010, 365, pp. 138–144 (doi: 10.1016/j.memsci.2010.08.052).
-
17)
-
17. Martín, J.S., Velasco, M.G., Heredia, J.B., et al: ‘Novel tannin-based adsorbent in removing cationic dye (methylene blue) from aqueous solution. Kinetics and equilibrium studies’, J. Hazard. Mater., 2010, 174, pp. 9–16 (doi: 10.1016/j.jhazmat.2009.09.008).
-
18)
-
18. Rauf, M.A., Meetani, M.A., Hisaindee, S.: ‘An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals’, Desalination, 2011, 276, pp. 13–27 (doi: 10.1016/j.desal.2011.03.071).
-
19)
-
19. Janus, M., Morawski, M.W.: ‘New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition’, Appl. Catal. B, 2007, 75, pp. 118–123 (doi: 10.1016/j.apcatb.2007.04.003).
-
20)
-
20. Wawrzyniak, B., Morawski, A.W.: ‘Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen’, Appl. Catal. B, 2006, 62, pp. 150–158 (doi: 10.1016/j.apcatb.2005.07.008).
-
21)
-
21. Appleton, E.L.: ‘A nickel–iron wall against contaminated ground water’, Environ. Sci. Technol., 1996, 30, (12), pp. 536A–539A (doi: 10.1021/es962526i).
-
22)
-
22. Tripathi, R.M., Kumar, N., Shrivastav, A., et al: ‘Catalytic activity of silver nanoparticles synthesized by Ficus panda leaf extract’, J. Mol. Catal. B, Enzym., 2013, 96, pp. 75–80 (doi: 10.1016/j.molcatb.2013.06.018).
-
23)
-
23. Rajesh, R., Kumar, S.S., Venkatesan, R.: ‘Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers’, New J. Chem., 2014, 38, pp. 1551–1558 (doi: 10.1039/c3nj01050c).
-
24)
-
24. Pal, J., Deb, M.K., Deshmukh, D.K., et al: ‘Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution’, Appl. Nanosci., 2014, 4, pp. 61–65 (doi: 10.1007/s13204-012-0170-0).
-
25)
-
25. Tripathi, R.M., Bhadwal, A.S., Gupta, R.K., et al: ‘ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity’, J. Photochem. Photobiol. B, 2014, 141, pp. 288–295 (doi: 10.1016/j.jphotobiol.2014.10.001).
-
26)
-
26. Tripathi, R.M., Bhadwal, A.S., Singh, P., et al: ‘Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis’, Adv. Nat. Sci., Nanosci. Nanotechnol., 2014, 5, pp. 025006–025010 (doi: 10.1088/2043-6262/5/2/025006).
-
27)
-
27. Bao, H., Hao, N., Yang, Y., et al: ‘Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells’, Nano Res., 2010, 3, pp. 481–489 (doi: 10.1007/s12274-010-0008-6).
-
28)
-
28. Sanghi, R., Verma, P.: ‘A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus’, Chem. Eng. J., 2009, 155, pp. 886–891 (doi: 10.1016/j.cej.2009.08.006).
-
29)
-
1. Li, J., Zhu, J.W., Liu, X.H.: ‘Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions’, Dalton Trans., 2014, 43, pp. 132–137 (doi: 10.1039/C3DT52242C).
-
30)
-
30. Tripathi, R.M., Gupta, R.K., Bhadwal, A.S., et al: ‘Fungal biomolecules assisted biosynthesis of Au–Ag alloy nanoparticles and evaluation of their catalytic property’, IET Nanobiotechnol., 2015, 9, (4), pp. 178–183 (doi: 10.1049/iet-nbt.2014.0043).
-
31)
-
31. Yao, Y., Li, G., Ciston, S., et al: ‘Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity’, Environ. Sci. Technol., 2008, 42, (13), pp. 4952–4957 (doi: 10.1021/es800191n).
-
32)
-
32. Tripathi, R.M., Kumar, N., Bhadwal, A.S., et al: ‘Facile and rapid biomimetic approach for synthesis of Hap nanofibers and evaluation of their photocatalytic activity’, Mater. Lett., 2014, 140, pp. 64–67 (doi: 10.1016/j.matlet.2014.10.149).
-
33)
-
33. Bhadwal, A.S., Tripathi, R.M., Gupta, R.K., et al: ‘Biogenic synthesis and photocatalytic activity of CdS nanoparticles’, RSC Adv., 2014, 4, pp. 9484–9490 (doi: 10.1039/c3ra46221h).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0098
Related content
content/journals/10.1049/iet-nbt.2015.0098
pub_keyword,iet_inspecKeyword,pub_concept
6
6