access icon free Postprandial anti-hyperglycemic activity of marine Streptomyces coelicoflavus SRBVIT13 mediated gold nanoparticles in streptozotocin induced diabetic male albino Wister rats

The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12–20 nm (mean diameter as 14 nm). The anti-type II diabetes activity of AuNPs is carried out by testing it in vitro α-glucosidase and α-amylase enzyme inhibition activity and in vivo postprandial anti-hyperglycemic activity in sucrose and glucose-loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α-glucosidase and α-amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.

Inspec keywords: Fourier transform infrared spectra; ultraviolet spectra; X-ray diffraction; diseases; transmission electron microscopy; X-ray chemical analysis; nanomedicine; enzymes; visible spectra; gold; spectrochemical analysis; nanoparticles; biochemistry

Other keywords: in vivo postprandial antihyperglycemic activity; Streptomyces coelicoflavus SRBVIT13; streptozotocin induced diabetic albino Wister rats; X-ray diffraction; biosynthesis; gold nanoparticles; Au; in vitro enzyme inhibition activity; energy-dispersive X-ray analysis; UV–visible spectroscopy; antitype II diabetes activity; Fourier transform infrared spectroscopy; type II diabetes mellitus; high-resolution transmission electron microscopy

Subjects: Electromagnetic radiation spectrometry (chemical analysis); Biomedical engineering; Nanotechnology applications in biomedicine; Other methods of nanofabrication

References

    1. 1)
    2. 2)
      • 25. Suthindhiran, K.R., Jayasri, M.A., Kannabiran, K.: ‘α-glucosidase and α-amylase inhibitory activity of Micromonospora sp. VITSDK3 (EU551238)’, Int. J. Integr. Biotechnol., 2009, 6, (3), pp. 115120.
    3. 3)
    4. 4)
    5. 5)
      • 43. Clarence, S.Y.: ‘The toxicity of gold nanoparticles in relation to their physiochemical properties’, Biomed. Res., 2013, 24, (3), pp. 400413.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 30. Duran, N., Marcato, P.D., Alves, O.L., et al: ‘Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains’, J. Nanobiotechnol., 2005, 3, (8), pp. 18.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 32. Nangia, Y., Wangoo, N., Goyal, N., et al: ‘A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles’, Microb. Cell Appl. Phys Lett., 2009, 94, (23), pp. 13.
    17. 17)
      • 34. Naheed, A., Seema, S., Radheshyam, R.: ‘Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum’, Adv. Mater. Lett., 2012, 3, (5), pp. 376380.
    18. 18)
    19. 19)
      • 31. Moghaddam, K.M.: ‘An introduction to microbial metal nanoparticle preparation method’, J. Young Investigators, 19, (19), pp. 17.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 28. Richard, J.P.: ‘The chemistry of gold’ (Elsevier Scientific Pub. Co., 1978, 2nd edn.).
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 24. Sambrook, J., Fritsch, E.F., Maniatis, T.: ‘Cold Spring Harbor Laboratory’, in ‘Molecular cloning: a laboratory manual’ (Cold Spring Harbor Laboratory Press, 1989, 2nd edn.), p. 1659.
    31. 31)
      • 15. Mohan, V., Sandeep, S., Deepa, R., et al: ‘Epidemiology of type 2 diabetes: Indian scenario’, Indian J. Med. Res., 2007, 125, (3), pp. 217230.
    32. 32)
    33. 33)
      • 42. Chen, H., Dorrigan, A., Saad, S., et al: ‘In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice’, PLoS ONE, 2013, 8, (2), pp. 18.
    34. 34)
    35. 35)
    36. 36)
      • 41. Xiao, D.Z., Hong, Y.W., Di, W., et al: ‘Toxicologic effects of gold nanoparticles in vivo by different administration routes’, Int. J. Nano Med., 2010, 5, pp. 771781.
    37. 37)
      • 19. Tarling, C.A., Woods, K., Zhang, R., et al: ‘The search for novel human pancreatic alpha-amylase inhibitors; high-throughput screening of terrestrial and marine natural product extracts’, Chem Biochem., 2008, 9, (3), pp. 433438.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 13. Balagurunathan, R., Radhakrishnan, M., Babu, R.R., et al: ‘Biosynthesis of gold nanoparticles by actinomycetes Streptomyces viridogens strain HM10’, Indian J. Biochem. Biophys., 2011, 48, pp. 331335.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0094
Loading

Related content

content/journals/10.1049/iet-nbt.2015.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading