© The Institution of Engineering and Technology
Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1- Caryota urens, GNP2-Pongamia glabra, GNP3- Hamelia patens, GNP4-Thevetia peruviana, GNP5-Calendula officinalis, GNP6-Tectona grandis, GNP7-Ficus petiolaris, GNP8- Ficus busking, GNP9- Juniper communis, GNP10-Bauhinia purpurea). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV-vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and Image J software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.
References
-
-
1)
-
1. Khan, A.U., Parvez, S.: ‘Detection of bla (NDM-4) in Escherichia coli from hospital sewage’, J. Med. Microbiol., 2014, 63, pp. 1404–1406 (doi: 10.1099/jmm.0.076026-0).
-
2)
-
2. Khan, A.U.: ‘Nanodrugs: optimism for emerging trend of multidrug resistance’, Int. J. Nanomed., 2012, 7, pp. 4323–4324 (doi: 10.2147/IJN.S35288).
-
3)
-
3. Qayyum, S., Sharma, D., Bisht, D., Khan, A.U.: ‘Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach’, Biochem. Biophys. Res. Commun., 2016, 474, pp. 652–659 (doi: 10.1016/j.bbrc.2016.04.145).
-
4)
-
28. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid Interface Sci., 2004, 275, pp. 496–502 (doi: 10.1016/j.jcis.2004.03.003).
-
5)
-
5. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 2638–2650 (doi: 10.1039/c1gc15386b).
-
6)
-
6. Khan, S., Alam, F., Azam, A., et al: ‘Gold nanoparticles enhance methylene blue induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm’, Int. J. Nanomed., 2012, 7, pp. 3245–3257 (doi: 10.2147/IJN.S31219).
-
7)
-
7. Kulshrestha, S., Khan, S., Meena, R., et al: ‘Graphene/zinc oxide nanocomposite film protects dental implant surface against cariogenic streptococcus mutans‘, Biofouling, 2014, 30, pp. 1281–1294 (doi: 10.1080/08927014.2014.983093).
-
8)
-
8. Chen, C.W., Hsu, C.Y., Lai, S.M., et al: ‘Metal nanobullets for multidrug resistant bacteria and biofilms’, Adv. Drug. Deliv. Rev., 2014, 78, pp. 88–104 (doi: 10.1016/j.addr.2014.08.004).
-
9)
-
9. Raja, K., Saravanakumar, A., Vijayakumar, R.: ‘Efficient synthesis of silver nanoparticles from prosopis juliflora leaf extract and its antimicrobial activity using sewage’, Spectrochim. Acta Mol. Biomol., 2012, 97, pp. 490–494 (doi: 10.1016/j.saa.2012.06.038).
-
10)
-
10. Oves, M., Khan, M.S., Zaidi, A., et al: ‘Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia’,PLoS One, 2013, 8, (3), p. e59140 (doi: 10.1371/journal.pone.0059140).
-
11)
-
11. Khan, R., Zaki, M., Khanam, Z., et al: ‘Novel compound from Trachyspermum ammi (Ajowan caraway) seeds with antibiofilm and anti-adherence activities against Streptococcus mutans: a potential chemotherapeutic agent against dental caries’, J. Appl. Micro., 2010, 109, pp. 2151–2159 (doi: 10.1111/j.1365-2672.2010.04847.x).
-
12)
-
24. Li, W.R., Xie, X.B., Shi, Q.S., et al: ‘Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli’, Appl. Microbiol. Biotechnol., 2010, 85, (4), pp. 1115–1122 (doi: 10.1007/s00253-009-2159-5).
-
13)
-
13. Sanchez-Cortes, S., Berenguel, R.M., Madejón, A., et al: ‘Adsorption of polyethyleneimine on silver nanoparticles and its interaction with a plasmid DNA: a surface-enhanced Raman scattering study’, Biomacromolecules, 2002, 3, pp. 655–660 (doi: 10.1021/bm015640o).
-
14)
-
10. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, (2), pp. 346–356 (doi: 10.1016/j.biotechadv.2013.01.003).
-
15)
-
15. Narayanan, K.B., Sakthivel, N.: ‘Coriander leaf mediated biosynthesis of gold nanoparticles’, Mater. Lett., 2008, 62, pp. 4588–4590 (doi: 10.1016/j.matlet.2008.08.044).
-
16)
-
16. Awwad, A.M., Salem, M.N., Abdeen, A.O.: ‘Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity’, Int. J. Ind. Chem., 2013, 4, (29), pp. 1–6, .
-
17)
-
17. Hasan, S., Ali, S.Z., Khan, A.U.: ‘Novel combinations of antibiotics to inhibit extended-spectrum β-lactamase and metallo-β-lactamase producers in vitro: a synergistic approach’, Future Microbiol., 2013, 8, pp. 939–944 (doi: 10.2217/fmb.13.54).
-
18)
-
18. Parashar, U.K., Kumar, V., Bera, T., et al: ‘Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles’, Nanotechnology, 2011, 22, pp. 1–13 (doi: 10.1088/0957-4484/22/41/415104).
-
19)
-
19. Kanmani, P., Lim, S.T.: ‘Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens’, Process Biochem., 2013, 49, pp. 1099–1106 (doi: 10.1016/j.procbio.2013.05.011).
-
20)
-
20. Mubarak Ali, D., Thajuddin, N., Jeganathan, K., et al: ‘Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens’, Colloids Surf. B, Biointerfaces, 2011, 85, pp. 360–365 (doi: 10.1016/j.colsurfb.2011.03.009).
-
21)
-
21. Su, H.L., Chou, C.C., Hung, D.J., et al: ‘The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay’, Biomaterials, 2009, 30, pp. 5979–5987 (doi: 10.1016/j.biomaterials.2009.07.030).
-
22)
-
22. Shrivastava, S., Bera, T., Roy, A., et al: ‘Characterization of enhanced antibacterial effects of novel silver nanoparticles’, Nanotechnology, 2007, 18, pp. 1–9 (doi: 10.1088/0957-4484/18/22/225103).
-
23)
-
23. Kalishwaralal, K., BarathManiKanth, S., Pandian, S.R., et al: ‘Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis’, Colloids Surf. B, Biointerfaces, 2010, 79, (2), pp. 340–344 (doi: 10.1016/j.colsurfb.2010.04.014).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0091
Related content
content/journals/10.1049/iet-nbt.2015.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6