access icon free Biogenic synthesis, optimisation and antibacterial efficacy of extracellular silver nanoparticles using novel fungal isolate Aspergillus fumigatus MA

To eliminate the elaborate processes employed in other non-biological-based protocols and low cost production of silver nanoparticles (AgNPs), this study reports biogenic synthesis of AgNPs using silver salt precursor with aqueous extract of Aspergillus fumigates MA. Influence of silver precursor concentrations, concentration ratio of fungal extract and silver nitrate, contact time, reaction temperature and pH are evaluated to find their effects on AgNPs synthesis. Ultraviolet–visible spectra gave surface plasmon resonance at 420 nm for AgNPs. Fourier transform infrared spectroscopy and X-ray diffraction techniques further confirmed the synthesis and crystalline nature of AgNPs, respectively. Transmission electron microscopy observed spherical shapes of synthesised AgNPs within the range of 3–20 nm. The AgNPs showed potent antimicrobial efficacy against various bacterial strains. Thus, the results of the current study indicate that optimisation process plays a pivotal role in the AgNPs synthesis and biogenic synthesised AgNPs might be used against bacterial pathogens; however, it necessitates clinical studies to find out their potential as antibacterial agents.

Inspec keywords: Fourier transform infrared spectra; optimisation; silver; surface plasmon resonance; pH; antibacterial activity; nanomedicine; X-ray diffraction; ultraviolet spectra; visible spectra; nanoparticles; cellular biophysics; microorganisms; nanofabrication

Other keywords: X-ray diffraction; antibacterial efficacy; silver salt precursor; nonbiological-based protocols; crystalline nature; surface plasmon resonance; size 3 nm to 20 nm; optimisation process; fungal extract; ultraviolet-visible spectra; silver nitrate; fungal isolate Aspergillus fumigatus MA; Fourier transform infrared spectroscopy; potent antimicrobial efficacy; transmission electron microscopy; optimisation; bacterial pathogens; antibacterial agents; Ag; extracellular silver nanoparticles; wavelength 420 nm; spherical shapes; bacterial strains; pH; biogenic synthesis

Subjects: Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Collective excitations (surface states); Infrared and Raman spectra in metals; Cellular biophysics; Biomedical materials; Nanotechnology applications in biomedicine; Visible and ultraviolet spectra of metals, semimetals, and alloys; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Nanofabrication using crystal growth techniques

References

    1. 1)
    2. 2)
      • 10. Sondi, I., Sondi, B.S.: ‘Silver nanoparticles as antimicrobial agents a case study on E. coli as a model for Gram-negative bacteria’, J. Colloid Interface Sci., 2004, 275, pp. 117182.
    3. 3)
    4. 4)
      • 29. Singh, D., Rathod, V., Ninganagouda, S., et al: ‘Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus’, Bioinf. Chem. Appl., 2014, 2014, pp. 18.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 9. Saifuddin, N., Wong, C.W., Nuryasumira, A.A.: ‘Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation’, Eur. J. Chem., 2009, 6, pp. 6167.
    10. 10)
    11. 11)
    12. 12)
      • 14. Sarsar, V., Selwal, K.K., Selwal, M.K.: ‘Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity’, J.Microbiol. Biotechnol. Res., 2013, 3, (5), pp. 2733.
    13. 13)
    14. 14)
      • 23. Sastry, M., Ahmad, A., Khan, M.I., et al: ‘Biosynthesis of metal nanoparticles using fungi and actinomycete’, Curr. Sci., 2003, 85, pp. 162170.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 13. Sarsar, V., Selwal, K.K., Selwal, M.K.: ‘Significant parameters in the optimization of biosynthesis of silver nanoparticles using Psidium guajava leaf extract and evaluation of their antimicrobial activity against human pathogenic bacteria’, Pharmanest, 2014, 5, pp. 17691774.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 2. Govindaraju, K., Tamilselvan, S., Kiruthiga, V., et al: ‘Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity of silver nanoparticles’, J. Biopest., 2010, 3, pp. 394399.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 31. Huang, J., Li, Q., Sun, D., et alBiosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, p. 105.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 6. Sarsar, V., Selwal, K.K., Selwal, M.K.: ‘Nanosilver: potent antimicrobial agent and its biosynthesis’, Afr. J. Biotechnol., 2014, 134, p. 546.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0058
Loading

Related content

content/journals/10.1049/iet-nbt.2015.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading